摘要:
In one aspect, the present invention teaches a multiple-gate transistor 130 that includes a semiconductor fin 134 formed in a portion of a bulk semiconductor substrate 132. A gate dielectric 144 overlies a portion of the semiconductor fin 134 and a gate electrode 146 overlies the gate dielectric 144. A source region 138 and a drain region 140 are formed in the semiconductor fin 134 oppositely adjacent the gate electrode 144. In the preferred embodiment, the bottom surface 150 of the gate electrode 146 is lower than either the source-substrate junction 154 or the drain-substrate junction 152.
摘要:
A static memory element includes a first inverter having an input coupled to a left bit node and an output coupled to a right bit node. A second inverter has an input coupled to the right bit node and an output coupled to the left right bit node. A first fully depleted semiconductor-on-insulator transistor has a drain coupled to the left bit node, and a second fully depleted semiconductor-on-insulator transistor has a drain coupled to the right bit node.
摘要:
A static memory element includes a first inverter having an input coupled to a left bit node and an output coupled to a right bit node. A second inverter has an input coupled to the right bit node and an output coupled to the left right bit node. A first fully depleted semiconductor-on-insulator transistor has a drain coupled to the left bit node, and a second fully depleted semiconductor-on-insulator transistor has a drain coupled to the right bit node.
摘要:
A method of fabricating a CMOS device wherein mobility enhancement of both the NMOS and PMOS elements is realized via strain induced band structure modification, has been developed. The NMOS element is formed featuring a silicon channel region under biaxial strain while the PMOS element is simultaneously formed featuring a SiGe channel region under biaxial compressive strain. A novel process sequence allowing formation of a thicker silicon layer overlying a SiGe layer, allows the NMOS channel region to exist in the silicon layer overlying a SiGe layer, allows the NMOS channel region to exist in the silicon layer which is under biaxial tensile strain enhancing electron mobility. The same novel process sequence results in the presence of a thinner silicon layer, overlying the same SiGe layer in the PMOS region, allowing the PMOS channel region to exist in the biaxial compressively strained SiGe layer, resulting in hole mobility enhancement.
摘要:
A semiconductor device includes an insulator layer, a semiconductor layer, a first transistor, and a second transistor. The semiconductor layer is overlying the insulator layer. A first portion of the semiconductor layer has a first thickness. A second portion of the semiconductor layer has a second thickness. The second thickness is larger than the first thickness. The first transistor has a first active region formed from the first portion of the semiconductor layer. The second transistor has a second active region formed from the second portion of the semiconductor layer. The first transistor may be a planar transistor and the second transistor may be a multiple-gate transistor, for example.
摘要:
A semiconductor device includes an insulator layer, a semiconductor layer, a first transistor, and a second transistor. The semiconductor layer is overlying the insulator layer. A first portion of the semiconductor layer has a first thickness. A second portion of the semiconductor layer has a second thickness. The second thickness is larger than the first thickness. The first transistor has a first active region formed from the first portion of the semiconductor layer. The second transistor has a second active region formed from the second portion of the semiconductor layer. The first transistor may be a planar transistor and the second transistor may be a multiple-gate transistor, for example.
摘要:
A method for forming a self-aligned contact to an ultra-thin body transistor first providing an ultra-thin body transistor with source and drain regions operated by a gate stack; forming a contact spacer on the gate stack; forming a passivation layer overlying the transistor; forming a contact hole in the passivation layer exposing the contact spacer and the source/drain regions; filling the contact hole with an electrically conductive material; and establishing electrical communication with the source/drain region.
摘要:
A method of fabricating a CMOS device wherein mobility enhancement of both the NMOS and PMOS elements is realized via strain induced band structure modification, has been developed. The NMOS element is formed featuring a silicon channel region under biaxial strain while the PMOS element is simultaneously formed featuring a SiGe channel region under biaxial compressive strain. A novel process sequence allowing formation of a thicker silicon layer overlying a SiGe layer, allows the NMOS channel region to exist in the silicon layer overlying a SiGe layer, allows the NMOS channel region to exist in the silicon layer which is under biaxial tensile strain enhancing electron mobility. The same novel process sequence results in the presence of a thinner silicon layer, overlying the same SiGe layer in the PMOS region, allowing the PMOS channel region to exist in the biaxial compressively strained SiGe layer, resulting in hole mobility enhancement.
摘要:
A complementary metal-oxide-semiconductor static random access memory cell that is formed by a pair of P-channel multiple-gate field-effect transistors (P-MGFETs), a pair of N-channel multiple-gate field-effect transistors (N-MGFETs), a second pair of N-MGFETs that has a drain respectively connected to a connection linking the respective drain of the N-MGFET of the first pair of N-MGFET to the drain of the P-MGFET of the pair of P-MGFETs; a pair of complementary bit lines, each respectively connected to the source of the N-MGFET of the second pair of N-MGFETS; and a word line connected to the gates of the N-MGFETs of the second pair of N-MGFETs.
摘要:
A diode 100 is formed on a silicon-on-insulator substrate that includes a silicon layer overlying an insulator layer 142. An active region is formed in the silicon layer and includes a p-doped region 108 and an n-doped region 106 separated by a body region 110. A high permittivity gate dielectric 114 overlies the body region 110 and a gate electrode 112 overlies the gate dielectric 114. As an example, the diode can be used for ESD protection.