Abstract:
Apparatus, system and method relates generally to data communication with noise-shaping crest factor reduction using polyphase transformation. In such a method, a composite signal is received by a delay and a waveform generator. The waveform generator is for noise-shaping crest factor reduction using polyphase transformation. The composite signal is delayed by the delay to provide a delayed composite signal. A waveform is generated by the waveform generator from the composite signal. The waveform is output from the waveform generator having clipping noise with respect to bands of corresponding carriers of the composite signal. The waveform is subtracted from the delayed version of the composite signal for peak-to-amplitude power ratio reduction. A reduced peak version of the delayed version of the composite signal delayed is output from the signal combiner.
Abstract:
A LDPC decoder utilizes a new schedule that breaks a dependency between data of different layers of a parity check matrix, so that the forward scan in the next layer can begin to perform after a predetermined time has elapsed (i.e. a delay) since the backwards scan of the previous layer has begun, and before the backwards scan of the previous layer is completed. Accordingly, the computation at the next layer can begin as soon as possible.
Abstract:
A method relates generally to channel equalization. In this method, a filter matrix is determined for transmission antennas by a channel equalizer of a first receiver processing chain. A first QR decomposition is performed on a first extended matrix for a first iteration. LLRs are fed from a second receiver processing chain to the first receiver processing chain for a second iteration. Symbol information is obtained from the LLRs. Interference is canceled using the symbol information to provide residual information. The channel equalizer is updated with the symbol information. The residual information is provided to the channel equalizer. User matrices corresponding to the transmission antennas are determined by the channel equalizer. This determination includes performing a second QR decomposition on a second extended matrix to obtain updated values for the user matrices, and performing updates using the symbol information and the updated values to provide the user matrices.
Abstract:
A method of performing digital pre-distortion in a communication network is described. The method comprises implementing a transceiver in the communication network, the transceiver enabling the transfer of communication signals in the communication network by way of a wireless communication channel; sampling signals, at the transceiver, associated with a transmit signal which are necessary to perform digital pre-distortion; providing the sampled signals to a remote computer; and generating, at the remote computer, parameters to be applied to a digital pre-distortion circuit of the transceiver. A communication network configured to enable digital pre-distortion is also described.
Abstract:
An apparatus relates generally to a repeater. In such an apparatus, the repeater has a signal analysis and classification block. The signal analysis and classification block includes a signal analysis block and a classification block. The signal analysis block is coupled to receive a digital signal which is a digital version of an input signal received by the repeater. The signal analysis block is coupled to provide signal information regarding the digital signal to the classification block. The classification block is configured to provide classification information to classify the digital signal using the signal information provided as being a waveform type of a group of waveform types.