Abstract:
Methods and apparatus are disclosed for receiving user data in a wireless communication system that employs coordinated multi-point transmission of the user data from a first cell serving a wireless terminal and a second cell site neighboring the first cell site. In an exemplary system, the first cell site maps control signals and user data to a time-frequency resources according to a first mapping pattern, while the second cell site maps control data and traffic data to the time-frequency resources according to a second mapping pattern. An exemplary method comprises extracting user data, according to the first mapping pattern, from time-frequency resources of a first transmission for the wireless terminal transmitted from the first cell site; detecting a control element transmitted by one of the first and second cell sites, the control element indicating that user data associated with the control element is mapped to the time-frequency resources according to the second mapping pattern; and, responsive to said detecting, extracting user data according to the second mapping pattern from time-frequency resources of a second transmission for the wireless terminal transmitted from the second cell site.
Abstract:
In a heterogeneous cell deployment a mobile terminal may need to receive control data transmissions from a macro node at the same time as a pico node is transmitting user data for the mobile terminal, using the same frequency or set of frequencies. This can result in a problematic interference situation. According to several embodiments of the present invention, at least one of two general approaches is used to mitigate the interference situation described above. In a first approach, the pico node's transmission power is reduced in some time intervals, thereby reducing the interference to a level where reception from the macro node is possible. In a second approach, which may be combined with the first approach in some cases, the data transmitted from the macro node is provided by the pico node, either alone or in combination with the macro node.
Abstract:
The present disclosure relates to a technique for transmitting modulation symbols on multiple frequency resources. A method aspect of this technique includes applying a Discrete Fourier Transform (DFT) coding per set of modulation symbols of two or more sets of modulation symbols, wherein a first set of modulation symbols from the two or more sets of modulation symbols is transmitted on a set of frequency resources handled by the same power amplifier. Then, Orthogonal Frequency Division Multiplexing (OFDM) modulation is applied to the sets of DFT coded modulation symbols to output a first set of OFDM symbols for transmission on the set of frequency resources, and output another set of OFDM symbols for transmission on at least one additional frequency resource distinct from the set of frequency resources. Power amplification is then applied per set of frequency resources at the power amplifier.
Abstract:
In one aspect, a wireless transmitter forms (1110) a first signal having a first integer number of symbol intervals in each of one or more time intervals of a predetermined length and forms (1120) a second signal having a second integer number of symbol intervals in each of the one or more time intervals of the predetermined length, the second integer number differing from the first integer number. The wireless transmitter simultaneously transmits (1130) the first and second signals in a frequency band, such that the first and second signals are frequency-domain multiplexed in the frequency band and such that a symbol interval starting time in the first signal is aligned with a corresponding symbol interval starting time in the second signal at least once per time interval.
Abstract:
A method in a first user equipment for adjusting a beacon signal to be detected by at least one second user equipment in a wireless telecommunications network is provided. The beacon signal is transmitted in order to enable an establishment of Device-to-Device, D2D, communication between the first user equipment and the at least one second user equipment. The method is characterized in that the method comprises adjusting, prior to transmitting the beacon signal, the transmit power of the beacon signal based on a requirement of an application in the first user equipment for which the D2D communication is to be established.A user equipment, a network node, and a method in a network node for enabling a D2D communication between a first user equipment and at least one second user equipment are also provided.
Abstract:
For future wireless systems, it is desired to keep network implementation aspects, such as transmission point selection, precoder selection, etc, transparent to the terminal. This means that terminals are envisaged to be unaware of e.g. from which specific network node a transmission is made. This may be referred to as the transparency principle. The proposed solution comprises enabling a receiver to determine a type of antenna association that may be assumed in regard of two blocks of information, based on the result of the decoding of e.g. the first data block. The determination is done in a way such that the principle of transparency is not broken.
Abstract:
Variable bandwidth assignment and frequency hopping are employed to make efficient use of radio resources. Variable bandwidth assignment is achieved by dynamically allocating different numbers of subcarriers to different wireless communication devices depending on their instantaneous channel conditions. The frequency hopping patterns are determined “on-the-fly” based on the current bandwidth assignments. The bandwidth assignments and frequency hopping patterns are signaled to the wireless communication devices in a scheduling grant.
Abstract:
A transmitter that may have marginal power availability is enabled to autonomously retransmit previously transmitted frames containing the same data. The transmitter sends an initial frame to a base transceiver station (BTS) and immediately retransmits the same frame without regard to any ACK/NAK transmission from the BTS. The retransmissions are accumulated in the receiver and decoded after a sufficient quantity of the frame is transmitted. After receiving the last retransmitted frame the BTS sends an ACK/NAK to the transmitter that is accepted.
Abstract:
It is presented a method for assisting downlink interference estimation in a cellular network. The method is performed in a network node of the cellular network and comprises the steps of: estimating an average transmit power of the network node in a future time period; transmitting a power parameter based on the estimated average transmit power to at least one wireless device being served by the network node; and transmitting a reference signal for downlink interference estimation. A corresponding network node, wireless device, computer programs and computer program products are also presented.
Abstract:
Methods and apparatus are disclosed for receiving user data in a wireless communication system that employs coordinated multi-point transmission of the user data from a first cell serving a wireless terminal and a second cell site neighboring the first cell site. In an exemplary system, the first cell site maps control signals and user data to a time-frequency resources according to a first mapping pattern, while the second cell site maps control data and traffic data to the time-frequency resources according to a second mapping pattern. An exemplary method comprises extracting user data, according to the first mapping pattern, from time-frequency resources of a first transmission for the wireless terminal transmitted from the first cell site; detecting a control element transmitted by one of the first and second cell sites, the control element indicating that user data associated with the control element is mapped to the time-frequency resources according to the second mapping pattern; and, responsive to said detecting, extracting user data according to the second mapping pattern from time-frequency resources of a second transmission for the wireless terminal transmitted from the second cell site.