Abstract:
This application describes a new method for rapid thinning, planarizing and fine polishing surfaces of diamond to the submicron/nanometer level so that large area, uniform thickness diamond wafers can be obtained. The method combines both chemical (dissolution of carbon in molten metals) and mechanical (rotating or moving sample fixtures in contact with the dissolving metals) polishing to achieve flat, smooth surface finishes in a relatively short period of time, thus improving the quality and economics of the overall polishing process. Several embodiments of apparatus for performing such chemical-mechanical polishing (CMP) of diamond are described.
Abstract:
The present invention provides improved methods for making field emission devices by which one can pre-deposit and bond the diamond particles or islands on a flexible metal foil at a desirably high temperature (e.g., near 900.degree. C. or higher), and then subsequently attach the high-quality- emitter-coated conductor foil onto the glass substrate. In addition to maximizing the field emitter properties, these methods provide high-speed, low-cost manufacturing. Since the field emitters can be pre-deposited on the metal foil in the form of long continuous sheet wound as a roll, the cathode assembly can be made by a high-speed, automated bonding process without having to subject each of the emitter-coated glass substrates to plasma heat treatment in a vacuum chamber.
Abstract:
In accordance with the invention, a field emission device is made by disposing emitter material on an insulating substrate, applying masking particles to the emitter material, applying an insulating film and a gate conductor film over the masking particles and emitter material and removing the particles to reveal a random distribution of apertures to the emitter material. The result is a novel and economical field emission device having numerous randomly distributed emission apertures which can be used to make low cost flat panel displays.
Abstract:
Articles comprising a quantity of superconductive oxide material can be fabricated by a process that comprises melting of part of an oxide precursor material, with resultant directional resolidification. Exemplary embodiments comprise zone melting and movement of the hot zone through the precursor material. The method can result in superconductive material having improved properties, e.g., higher critical current, as compared to prior art oxide superconductors.
Abstract:
A method of producing normal-metal-clad superconductive oxide wire, tape and the like is disclosed. The method comprises forming an intermediate body by surrounding a quantity of the oxide powder (e.g., Ba.sub.2 YCu.sub.3 O.sub.6.9) with an appropriate normal metal jacket, reducing the cross section of the intermediate body by any appropriate technique (e.g., drawing or rolling), and heat treating the elongated body such that substantial sintering of the powder results, and such that, after completion of the heat treatment, the sintered oxide has a composition that is associated with superconductivity in unclad bulk samples of the oxide. The latter condition requires that at least the portion of the cladding that is in contact with the oxide powder is substantially inert with respect to oxygen and the oxide under the conditions of the heat treatment. Silver is the currently preferred inert normal metal. Exemplarily, Ag can be used to provide a diffusion barrier with other normal metal (e.g., Ni and Cu) surrounding the diffusion barrier, or the cladding can consist substantially of Ag. Various techniques for preventing oxygen loss and/or restoring lost oxygen from the powder are disclosed. Advantageously the elongated body is appropriately shaped (e.g., wound into a helical coil) prior to the heat treatment. Elongate bodies produced according to the invention can advantageously be used as superconductive magnets, and in a variety of other apparatus and systems.
Abstract:
In alternative embodiments, the invention provides articles of manufacture comprising biocompatible nanostructures comprising PolyEther EtherKetone (PEEK) surface-modified (surface-nanopatterned) to exhibit nanostructured surfaces that promote osseointegration and bone-bonding for, e.g., joint (e.g., knee, hip and shoulder) replacements, bone or tooth reconstruction and/or implants, including their use in making and using artificial tissues and organs, and related, diagnostic, screening, research and development and therapeutic uses, e.g., as primary or ancillary drug delivery devices. In alternative embodiments, the invention provides biocompatible nanostructures that promote osseointegration and bone-bonding for enhanced cell and bone growth and e.g., for in vitro and in vivo testing, restorative and reconstruction procedures, implants and therapeutics.
Abstract:
In alternative embodiments, the invention provides products (articles) of manufacture comprising nanostructures such as nanotubes having a surface comprising tantalum. In alternative embodiments, products of manufacture of the invention include nanostructures, e.g., nanotubes, nanowire, nanopore, and the like comprising a surface layer of tantalum. In alternative embodiments, products or articles of manufacture of the invention are bioimplants, and the tantalum-surface-coated nanostructures of the invention provide increased bioactivity and bone forming ability. In alternative embodiments, products or articles of manufacture of the invention, e.g., bioimplants, comprising the tantalum-surface-coated nanostructures of the invention are used for in vitro, ex vivo and in vivo testing, implants, biomedical devices and therapeutics.
Abstract:
Devices, systems and techniques are described for producing and implementing articles and materials having nano-scale and microscale structures that exhibit superhydrophobic, superoleophobic or omniphobic surface properties and other enhanced properties. In one aspect, a surface nanostructure can be formed by adding a silicon-containing buffer layer such as silicon, silicon oxide or silicon nitride layer, followed by metal film deposition and heating to convert the metal film into balled-up, discrete islands to form an etch mask. The buffer layer can be etched using the etch mask to create an array of pillar structures underneath the etch mask, in which the pillar structures have a shape that includes cylinders, negatively tapered rods, or cones and are vertically aligned. In another aspect, a method of fabricating microscale or nanoscale polymer or metal structures on a substrate is made by photolithography and/or nano imprinting lithography.
Abstract:
An implantable medical device including a radially-expandable body and an attached detection device. The detection device includes a sensor positioned on a surface of the radially-expandable body and configured to detect endothelialization of the surface. The detection device also includes a transmitter and a receiver. Systems incorporating the implantable medical device and methods of using the device are also disclosed.
Abstract:
Methods are provided for the three dimensional manipulation of cells, and for the formation of an organized engineered cell tissue. Also provided are the organized engineered cell tissues produced by the methods. In one method, a plurality of magnetically labeled cells are mixed with a cross-linkable hydrogel to form a cell-hydrogel mixture, the at least a portion of the plurality of magnetically labeled cells are manipulated with a magnetic field to arrange the magnetically labeled cells into a specific cellular arrangement, and the hydrogel is crosslinked to form the organized engineered cell tissue. The approach presented herein offers a means to circumvent the deficiencies in the field of regenerative medicine, and allows for the production of organized tissues in situ with specific cellular organizations that mimic the native tissue.