Abstract:
A light emitting device including a first electrode and a second electrode, and an emission layer disposed between the first electrode and the second electrode and including quantum dots, a first charge auxiliary layer disposed between the emission layer and the first electrode, and a second charge auxiliary layer disposed between the emission layer and the second electrode, wherein the emission layer comprises a first emission layer contacting the first charge auxiliary layer, a second emission layer disposed on the first emission layer, and a third emission layer disposed on the second emission layer. The hole mobility of the first emission layer decreases sequentially from the first emission layer to the third emission layer.
Abstract:
A semiconductor-ligand composite, including a semiconductor nanocrystal and a ligand layer including an organic ligand coordinated on a surface of the semiconductor nanocrystal, wherein the organic ligand includes a compound represented by Chemical Formula 1, a compound represented by Chemical Formula 2 or a combination thereof, wherein Chemical Formula 1 and Chemical Formula 2 are given below and are the same as described in detail herein.
Abstract:
A light emitting film including a plurality of quantum dots and an electronic device including the same. The plurality of quantum dots constitute at least a portion of a surface of the light emitting film, the plurality of quantum dots do not include cadmium, and the at least a portion of a surface of the light emitting film includes a metal halide bound to at least one quantum dot of the plurality of quantum dots.
Abstract:
A light conversion device includes a frame through which incident light is received from a light source and converted light is emitted from the light conversion device, the frame including: an opening through which light of a first color is received from the light source and from which light of a second color is emitted from the light conversion device, and a wall which surrounds the opening, a substrate in the opening and supported by the wall, a light conversion layer which is disposed on the substrate and receives the light of the first color from the light source, the light conversion layer including a light converting particle which converts the light of the first color to the light of the second color, a first inorganic layer disposed on the light conversion layer, and a first organic layer disposed on the first inorganic layer.
Abstract:
A quantum dot includes a core-shell structure including a core including a first semiconductor nanocrystal and a shell disposed on the core, and including a material at least two different halogens, and the quantum dot does not include cadmium.
Abstract:
A quantum dot comprising a core comprising a first semiconductor nanocrystal comprising zinc, selenium, and optionally tellurium; and a shell disposed on the core and comprising a second semiconductor nanocrystal having a different composition from the first semiconductor nanocrystal, and comprising zinc and at least one of sulfur and selenium, wherein the shell comprises at least three branches extending from the core, wherein at least one of the branches has a length of greater than or equal to about 2 nm, the quantum dot emits blue light comprising a maximum emission peak at a wavelength of less than or equal to about 470 nm, a full width at half maximum (FWHM) of the maximum emission peak is less than about 35 nm, and the quantum dot does not comprise cadmium.
Abstract:
A semiconductor light emitting element includes a light emitting structure including a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer. A first electrode structure includes a conductive via connected to the first conductivity type semiconductor layer. A second electrode structure is connected to the second conductivity type semiconductor layer. An insulating part having an open region exposes part of the first and second electrode structures while covering the first and second electrode structures. First and second pad electrodes are formed on the first and second electrode structures exposed by the open region and are connected to the first and second electrode structures.
Abstract:
A quantum dot comprising a core comprising a first semiconductor nanocrystal comprising zinc, selenium, and optionally tellurium; and a shell disposed on the core and comprising a second semiconductor nanocrystal having a different composition from the first semiconductor nanocrystal, and comprising zinc and at least one of sulfur and selenium, wherein the shell comprises at least three branches extending from the core, wherein at least one of the branches has a length of greater than or equal to about 2 nm, the quantum dot emits blue light comprising a maximum emission peak at a wavelength of less than or equal to about 470 nm, a full width at half maximum (FWHM) of the maximum emission peak is less than about 35 nm, and the quantum dot does not comprise cadmium.
Abstract:
A quantum dot including a core that includes a first semiconductor nanocrystal including zinc and selenium, and optionally sulfur and/or tellurium, and a shell that includes a second semiconductor nanocrystal including zinc, and at least one of sulfur or selenium is disclosed. The quantum dot has an average particle diameter of greater than or equal to about 13 nm, an emission peak wavelength in a range of about 440 nm to about 470 nm, and a full width at half maximum (FWHM) of an emission wavelength of less than about 25 nm. A method for preparing the quantum dot, a quantum dot-polymer composite including the quantum dot, and an electronic device including the quantum dot is also disclosed.
Abstract:
A method of producing a quantum dot comprising zinc selenide, the method comprising: providing an organic ligand mixture comprising a carboxylic acid compound, a primary amine compound, a secondary amide compound represented by Chemical Formula 1, and a first organic solvent:
RCONHR Chemical Formula 1
wherein each R is as defined herein; heating the organic ligand mixture in an inert atmosphere at a first temperature to obtain a heated organic ligand mixture; adding a zinc precursor, a selenium precursor, and optionally a tellurium precursor to the heated organic ligand mixture to obtain a reaction mixture, wherein the zinc precursor does not comprise oxygen; and heating the reaction mixture at a first reaction temperature to synthesize a first semiconductor nanocrystal particle.