Abstract:
An actuator includes a plurality of power transmitters configured to transmit power sequentially, and an elastic element configured to connect a first power transmitter and a second power transmitter that are adjacent to each other and perform a coaxial rotation motion, among the plurality of power transmitters.
Abstract:
A driving module including a driving source configured to generate power, a gear train including a decelerating gear set configured to receive driving power from the driving source and a ring gear attached to one side thereof, and a rotary joint including at least one planetary gear configured to rotate using power received from an output end of the decelerating gear set and to revolve along the ring gear is disclosed.
Abstract:
A motion assistance apparatus includes a force transmitting frame having a sliding space therein, the force transmitting frame configured to support a distal part of a user, a slider configured to slide in the sliding space, and a driving frame connected to the slider and configured to slide with respect to a proximal part of the user.
Abstract:
A motion assistance apparatus includes a proximal support configured to support a proximal part of a user, a first drive link and a second drive link configured to perform translational motions with respect to the proximal support at different velocities, a support joint rotatably connected to the second drive link, a support body connecting the first drive link and the support joint, the support body configured to simultaneously perform a translational motion and a rotational motion with respect to the proximal support, a distal support connected to the support body, the distal support configured to support a distal part of the user, and a torque providing device configured to provide a torque to rotate the support joint.
Abstract:
A motion assistance apparatus includes a proximal support configured to support a proximal part of a user, a distal support configured to support a distal part of the user, and a rotary frame connected to the distal support, and configured to simultaneously perform a translational motion and a rotational motion relative to the proximal support.
Abstract:
A driving module including a driving source configured to generate power, a rotary rod connected to the driving source to rotate by receiving the power from the driving source, a power conversion block coupled with the rotary rod to be straight-line-driven in a longitudinal direction of the rotary rod in response to a rotation of the rotary rod, and a power transmission unit configured to operate in response to a driving of the power conversion block is disclosed.
Abstract:
A driving module including a driving source configured to generate power, a gear train including a decelerating gear set configured to receive driving power from the driving source and a ring gear attached to one side thereof, and a rotary joint including at least one planetary gear configured to rotate using power received from an output end of the decelerating gear set and to revolve along the ring gear is disclosed.
Abstract:
A force transmitting frame may have a length greater than a width. Stiffnesses of first and second end portions of the force transmitting frame may be greater than a stiffness of a central area of the force transmitting frame in a longitudinal direction of the force transmitting frame. The force transmitting frame may include: an inner frame configured to support one side of a user; and/or an outer frame of which first and second end portions are fixed to first and second end portions of the inner frame, and of which a central portion is not fixed to a central portion of the inner frame. The central portion of the outer frame may be configured to slide with respect to the central portion of the inner frame.
Abstract:
Driving modules, motion assistance apparatuses including at least one of the driving modules, and methods of controlling at least one of the motion assistance apparatus may be provided. For example, a driving module including a driving source on one side of a user and configured to transmit power, an input side rotary body connected to the driving source and configured to rotate, and a first decelerator and a second decelerator configured to operate using the power received from the driving source through the input side rotary body, wherein a gear ratio from the input side rotary body to an output terminal of the first decelerator differs from a gear ratio from the input side rotary body to an output terminal of the second decelerator, may be provided.
Abstract:
In a joint assembly of a walking assistance robot that is capable of performing an operation with 3 degrees of freedom, similarly to a user's joint, a rolling motion and a sliding motion are simultaneously made, and a rotation center changes so that the joint assembly can make a similar motion to that of an actual knee joint of the user. Thus, when the user wears the walking assistance robot and walks, misalignment can be prevented from occurring in the knee joint.