Abstract:
An organic photoelectric material may include a compound represented by the above Chemical Formula 1, and an organic photoelectric device and an image sensor including the organic photoelectric material.
Abstract:
An OLED panel for implementing biometric recognition influencing an aperture ratio of an OLED light emitter i includes a substrate, an OLED on the substrate, and a driver on the substrate. The OLED may emit visible light, and the driver may drive the OLED. The driver may include a visible light sensor configured to detect the visible light emitted by the OLED, and the visible light sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate. The OLED panel may include a near infrared ray OLED that is configured to emit near infrared rays, and the driver may include a near infrared ray sensor configured to detect near infrared rays emitted by the near infrared ray OLED. The near infrared ray sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate.
Abstract:
An image sensor may include a photoelectric device configured to selectively absorb light associated with a first color of three primary colors, a semiconductor substrate stacked with the photoelectric device and including first and second photo-sensing devices configured to sense light associated with second and third colors of the three primary colors, respectively, a first color filter corresponding to the first photo-sensing device and configured to selectively transmit light of the first wavelength spectrum, a second color filter corresponding to the second photo-sensing device and configured to selectively transmit light associated with a mixed color of the first color and the third color, and a first insulating layer between the photoelectric device and the semiconductor substrate and corresponding to the second photo-sensing device, and configured to selectively reflect light of a part of visible light.
Abstract:
A photoelectric diode includes a first electrode and a second electrode facing each other; a photoelectric conversion layer between the first electrode and the second electrode, and a compensation layer on the photoelectric conversion layer, the compensation layer being configured to compensate absorption and reflection of light. The photoelectric conversion layer is associated with a first optical spectrum having a light-absorption peak at a first wavelength and a reflection peak at a second wavelength, the first wavelength and the second wavelength both within a wavelength region of about 750 nm to about 1200 nm. The photoelectric diode is associated with a second optical spectrum having a light-absorption peak at a third wavelength, the third wavelength is within the wavelength region of about 750 nm to about 1200 nm, the third wavelength different from the first wavelength.
Abstract:
A composition may include a compound, a film may include the composition, an organic layer of an organic sensor and/or photoelectric diode may include the compound, and the film, organic sensor, and/or photoelectric diode may be included in an electronic device.
Abstract:
An OLED panel may be embedded with a near-infrared organic photosensor and may be configured to implement biometric recognition without an effect on an aperture ratio of an OLED emitter. The OLED panel may include a substrate, an OLED stack on the substrate and configured to emit visible light, and an NIR light sensor stack on the substrate and including an NIR emitter configured to emit NIR light and an NIR detector. The NIR light sensor stack may be between the substrate and the OLED stack. The OLED panel may be included in one or more various electronic devices.
Abstract:
An image sensor may include an organic photo-sensing device configured to selectively sense first visible light and a photo-sensing device array including a first photo-sensing device configured to selectively sense second visible light, a second photo-sensing device configured to selectively sense third visible light, and a third photo-sensing device configured to selectively sense mixed light of the second visible light and the third visible light. The image sensor may include a color filter array including a first color filter configured to selectively transmit the second visible light, a second color filter configured to selectively transmit the third visible light, and a third color filter configured to transmit mixed light of the second visible light and the third visible light. At least the first photo-sensing device and the second photo-sensing device may be at different depths in a substrate and may be laterally offset from each other.
Abstract:
An organic photoelectronic device includes a first electrode and a second electrode facing each other and a light-absorption layer between the first electrode and the second electrode and including a photoelectric conversion region including a p-type light-absorbing material and an n-type light-absorbing material and a doped region including an exciton quencher and at least one of the p-type light-absorbing material and the n-type light-absorbing material, wherein at least one of the p-type light-absorbing material and the n-type light-absorbing material selectively absorbs a part of visible light, and an image sensor includes the same.
Abstract:
Disclosed is a non-invasive biometric sensor including a light source, an organic photodetector, and a detector. The light source is configured to irradiate light in a desired (and/or alternatively predetermined) wavelength range to a body part. The organic photodetector is configured to sense the light in the desired (and/or alternatively predetermined) wavelength range in response to the light in the desired (and/or alternatively predetermined) range being transmitted through the body part. The detector is configured to determine biomedical information of the body part based on an amount of the light sensed by the organic photodetector.
Abstract:
Example embodiments provide a compound of Chemical Formula 1, and an organic photoelectric device, an image sensor, and an electronic device including the same.