Abstract:
A data driver includes a data signal converter to convert image data to a data signal, an output buffer to output the data signal to a data line, a first cascode circuit connected to the output buffer and including a plurality of transistors, a first noise attenuator connected to a first node between the output buffer and the first cascode circuit, and to attenuate a first current noise, a second cascode circuit connected to the output buffer and including a plurality of transistors, a second noise attenuator connected a second node between the output buffer and the second cascode circuit, and to attenuate a second current noise, a current integrator to generate an integrated voltage by integrating a first current flowing through the first cascode circuit and a second current flowing through the second cascade circuit, and an analog-digital converter (ADC) to convert the integrated voltage to a digital signal.
Abstract:
An image processing apparatus and image processing method are disclosed. The image processing apparatus includes an image input unit receiving input image data to obtain grayscale values of a display image, a modeling unit calculating a luminance change ratio for each grayscale value according to a change of an on-pixel ratio and a final luminance reflected by the luminance change ratio, a grayscale re-mapping unit determining a compensation grayscale value for compensating a luminance change ratio according to the on-pixel ratio of the input image data to display a target luminance corresponding to a predetermined grayscale value included in grayscale information of the input image data in the on-pixel ratio condition of the input image data, and an image output unit outputting an output image data compensating the input image data by the compensation grayscale value.
Abstract:
A method of forming a fine pattern includes providing a first metal layer on a base substrate, providing a first passivation layer on the first metal layer, providing a mask pattern on the first passivation layer, providing a partitioning wall pattern having a reverse taper shape by etching the first passivation layer, coating a composition having a block copolymer between the partitioning wall patterns adjacent each other, providing a self-aligned pattern by heating the composition, and providing a metal pattern by etching the first metal layer using the self-aligned pattern as a mask.
Abstract:
An organic light emitting display device includes a plurality of pixels in a display area; a data driver configured to supply a data signal to the pixels; and a data converter configured to output a correction image data utilized in generation of the data signal, and the data converter is configured to generate a stress data corresponding to an input image data, to accumulate and store at least a portion of the stress data in a compressed state, and to generate the correction image data obtained by correcting the input image data according to the accumulated stress data.
Abstract:
A display device with reduced dynamic false contouring effect is disclosed. In one aspect, the device includes a display unit including a plurality of pixels and a timing controller. The timing controller is configured to determine a grayscale value of an image frame based on a grayscale distribution of the image frame. The controller is further configured to determine an arrangement of sub-frames as a driving mode based on the determined grayscale.
Abstract:
A display device configured to reduce power consumption, in accordance with an exemplary embodiment of the present invention, includes a signal controller configured to calculate saturation data, luminance data, and power consumption data of input image data, to calculate a compensation ratio based on a rate of change of luminance, a rate of increase of saturation, or a power consumption, to generate compensation image data having a saturation of a red, green, or blue image of the input image data increased up to a threshold value so that the compensation ratio exceeds a reference value, and to send the generated compensation image data to a data driver, and the data driver configured to supply data voltages corresponding to the compensation image data, in response to gate signals sequentially generated from a gate driver to a display panel.
Abstract:
An image processing apparatus and image processing method are disclosed. The image processing apparatus includes an image input unit receiving input image data to obtain grayscale values of a display image, a modeling unit calculating a luminance change ratio for each grayscale value according to a change of an on-pixel ratio and a final luminance reflected by the luminance change ratio, a grayscale re-mapping unit determining a compensation grayscale value for compensating a luminance change ratio according to the on-pixel ratio of the input image data to display a target luminance corresponding to a predetermined grayscale value included in grayscale information of the input image data in the on-pixel ratio condition of the input image data, and an image output unit outputting an output image data compensating the input image data by the compensation grayscale value.