Abstract:
Methods, systems, and devices for wireless communication are described. A device (e.g., a user equipment (UE) or a base station) may communicate (e.g., receive or transmit) a set of service data units (SDUs) of an application data unit (ADU). The device may be aware of the set of SDUs corresponding to the ADU based on an identifier in a header of the set of SDUs. The device may determine that an SDU of the ADU is absent and proactively transmit a signal based on identifying the absent SDU. Signaling ADU awareness between distributed units (DUs) and a centralized unit (CU) of a base station is described. The CU may indicate that a set of SDUs correspond to an ADU via a user plane interface. For example, a header associated with the interface may include one or more bits identifying the ADU in a payload corresponding to the header.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless communications entity, such as a user equipment (UE), a base station, a network core, or an application server, may identify a round-trip time (RTT) latency requirement that may pertain to a round-trip latency in wireless communications between the UE and the base station. The wireless communications entity may identify a one one-way directional delay budget that satisfies the RTT latency requirement for an application of an application server. The application server may be in communication with the UE via the base station. The wireless communications entity may modify a value of the one-way directional delay budget and transmit a message that is associated with the modified value of the one one-way directional delay budget.
Abstract:
Techniques are provided for passive positioning of user equipment (UE). An example method for passive positioning of a user equipment includes receiving a first positioning reference signal from a first station at a first time, receiving a second positioning reference signal from a second station at a second time, receiving a turnaround time value associated with the first positioning reference signal and the second positioning reference signal, and a distance value based on a location of the first station and a location of the second station, and determining a time difference of arrival based at least in part on the turnaround time value, the distance value, the first time, and the second time.
Abstract:
An access network (AN) receives a call announcement message for transmission to an access terminal (AT). The AN initiates, in response to the received call announcement message, a physical-layer synchronization procedure for at least one channel between the AN and the AT, the physical-layer synchronization procedure associated with a transition of the access terminal to a dedicated channel state. The AN performs the initiation by sending a message to the AT. In response to the message, the AT monitors a downlink channel for receipt of the call announcement message. The AN then transmits the call announcement message on the downlink channel to the access terminal, and the AT receives the call announcement message due to the monitoring. The call announcement message is transmitted either (i) before the physical layer synchronization procedure completes or (ii) before a transmission of a reconfiguration complete message indicating completion of dedicated channel state transition.
Abstract:
The disclosure is directed to group communications over evolved multimedia broadcast/multicast services (E-MBMS). An embodiment identifies a schedule for an indicator on a broadcast/multicast medium of a first multicast media on a multicast flow, wherein the indicator is configured to identify a location of data on the broadcast/multicast medium and to identify a presence of the data on the multicast flow, binds application layer paging, an application layer wake up mechanism, or a power saving mechanism to the schedule for the indicator on the multicast flow, wakes from a sleep mode to monitor the indicator to determine availability of the first multicast media based on the indicator, tunes to the first multicast media if the first multicast media is available, and returns to the sleep mode, if the first multicast media is not available.
Abstract:
In an embodiment, a UE determines to transmit a message (e.g., an alert message, a call initiation message). Based on the type of the message to be transmitted, the UE selectively transmits supplemental data configured to prompt an access network to transition the UE to a dedicated channel state (DCS). In another embodiment, an application server configured to arbitrate communication sessions between UEs receives a message for transmission to a target UE. Based on the type of the message to be transmitted to the target UE, the application server selectively transmits, to a serving access network of the target UE, supplemental data configured to prompt the serving access network to transition the target UE to the DCS. In another embodiment, the access network selectively transitions a target UE to the DCS based on whether differently sized messages are received at the access network for transmission to the target UE.
Abstract:
Methods, systems, and devices for detecting earliest channel path and/or determining time of arrival of signals in location tracking systems are described. An ultra-wideband (UWB) signal may be received from a tag. A noise estimation level above which the UWB signal is detectable may be determined using a noise estimation metric. A channel impulse response (IR) energy level may be determined using a channel energy metric. A leading edge window of the UWB signal may be identified. The leading edge window may be based on, at least in part, the noise estimation level and the channel IR energy level.
Abstract:
An access network (AN) periodically broadcasts, to at least one user equipment (UE) served by the AN, a message requesting the at least one UE, whenever the at least one UE determines to perform a given type of transmission, (i) to measure a reverse-link channel upon which the transmission is to be performed, and (ii) to include results of the measurement within the transmission. A given UE receives the periodically broadcasted message from the AN and determines to perform the given type of transmission. The given UE refrains from measuring the reverse-link channel, as instructed by the AN, based on the data being associated with a communication session of a given type. The given UE transmits the data to the AN. If the data transmission omits the requested measurement results, the AN selects a transmission format for subsequent transmissions of the given UE based on the omission.
Abstract:
The disclosure is directed to prioritizing call announce response in a broadcast/multicast communication system. An embodiment establishes a first priority for response based on assigning each user equipment (UE) a first random delay for response to a first call announce, responds to the first call announce using the first random delay, and determines a second priority for response to a subsequent call announce based on an elapsed time that each UE is present in a multicast area.