Abstract:
Flip-flops in a monolithic three-dimensional (3D) integrated circuit (IC)(3DIC) and related method are disclosed. In one embodiment, a single clock source is provided for the 3DIC and distributed to elements within the 3DIC. Delay is provided to clock paths by selectively controllable flip-flops to help provide synchronous operation. In certain embodiments, 3D flip-flop are provided that include a master latch disposed in a first tier of a 3DIC. The master latch is configured to receive a flip-flop input and a clock input, the master latch configured to provide a master latch output. The 3D flip-flop also includes at least one slave latch disposed in at least one additional tier of the 3DIC, the at least one slave latch configured to provide a 3DIC flip-flop output. The 3D flip-flop also includes at least one monolithic intertier via (MIV) coupling the master latch output to an input of the slave latch.
Abstract:
A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
Abstract:
A three-dimensional (3D) ultra-low power neuromorphic accelerator is described. The 3D ultra-low power neuromorphic accelerator includes a power manager as well as multiple tiers. The 3D ultra-low power neuromorphic accelerator also includes multiple cores defined on each tier and coupled to the power manager. Each core includes at least a processing element, a non-volatile memory, and a communications module.
Abstract:
A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to the bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
Abstract:
A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to the bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
Abstract:
Power distribution networks in a three-dimensional (3D) integrated circuit (IC) (3DIC) are disclosed. In one aspect, a voltage drop within a power distribution network in a 3DIC is reduced to reduce unnecessary power dissipation. In a first aspect, interconnect layers devoted to distribution of power within a given tier of the 3DIC are provided with an increased thickness such that a resistance of such interconnect layers is reduced relative to previously used interconnect layers and also reduced relative to other interconnect layers. Further voltage drop reductions may also be realized by placement of vias used to interconnect different tiers, and particularly, those vias used to interconnect the thickened interconnect layers devoted to the distribution of power. That is, the number, position, and/or arrangement of the vias may be controlled in the 3DIC to reduce the voltage drop.
Abstract:
Multi-processor core three-dimensional (3D) integrated circuits (ICs) (3DICs) and related methods are disclosed. In aspects disclosed herein, ICs are provided that include a central processing unit (CPU) having multiple processor cores (“cores”) to improve performance. To further improve CPU performance, the multiple cores can also be designed to communicate with each other to offload workloads and/or share resources for parallel processing, but at a communication overhead associated with passing data through interconnects which have an associated latency. To mitigate this communication overhead inefficiency, aspects disclosed herein provide the CPU with its multiple cores in a 3DIC. Because 3DICs can overlap different IC tiers and/or align similar components in the same IC tier, the cores can be designed and located between or within different IC tiers in a 3DIC to reduce communication distance associated with processor core communication to share workload and/or resources, thus improving performance of the multi-processor CPU design.
Abstract:
Embodiments disclosed in the detailed description include a complete system-on-chip (SOC) solution using monolithic three dimensional (3D) integrated circuit (IC) (3DIC) integration technology. The present disclosure includes example of the ability to customize layers within a monolithic 3DIC and the accompanying short interconnections possible between tiers through monolithic intertier vias (MIV) to create a system on a chip. In particular, different tiers of the 3DIC are constructed to support different functionality and comply with differing design criteria. Thus, the 3DIC can have an analog layer, layers with higher voltage threshold, layers with lower leakage current, layers of different material to implement components that need different base materials and the like. Unlike the stacked dies, the upper layers may be the same size as the lower layers because no external wiring connections are required.
Abstract:
Through-silicon via (TSV) crack sensors for detecting TSV cracks in three-dimensional (3D) integrated circuits (ICs) (3DICs), and related methods and systems are disclosed. In one aspect, a TSV crack sensor circuit is provided in which doped rings for a plurality of TSVs are interconnected in parallel such that all interconnected TSV doped rings may be tested at the same time by providing a single current into the contacts of the interconnected doped rings. In another aspect, a TSV crack sensor circuit is provided including one or more redundant TSVs. Each doped ring for a corresponding TSV is tested independently, and a defective TSV may be replaced with a spare TSV whose doped ring is not detected to be cracked. This circuit allows for correction of a compromised 3DIC by replacing possibly compromised TSVs with spare TSVs.
Abstract:
Methods for constructing three dimensional integrated circuits and related systems are disclosed. In one aspect, a first tier is constructed by creating active elements such as transistors on a holding substrate. An interconnection metal layer is created above the active elements. Metal bonding pads are created within the interconnection metal layer. A second tier is also created, either concurrently or sequentially. The second tier is created in much the same manner as the first tier and is then placed on the first tier, such that the respective metal bonding pads align and are bonded one tier to the other. The holding substrate of the second tier is then released. A back side of the second tier is then thinned, such that the back surfaces of the active elements (for example, a back of a gate in a transistor) are exposed. Additional tiers may be added if desired essentially repeating this process.