Abstract:
A one time programming (OTP) apparatus unit cell includes magnetic tunnel junctions (MTJs) with reversed connections for placing the MTJ in an anti-parallel resistance state during programming. Increased MTJ resistance in its anti-parallel resistance state causes a higher programming voltage which reduces programming time and programming current.
Abstract:
A memory has a plurality of non-volatile resistive (NVR) memory arrays, each with an associated reference voltage generating circuit coupled by a reference circuit coupling link to a reference line, the reference coupled to a sense amplifier for that NVR memory array. Reference line coupling links couple the reference lines of different NVR memory arrays. Optionally, different ones of the reference coupling links are removed or opened, obtaining respective different average and isolated reference voltages on the different reference lines. Optionally, different ones of the reference circuit coupling links are removed or opened, obtaining respective different averaged voltages on the reference lines, and uncoupling and isolating different reference circuits.
Abstract:
Aspects for adjusting resistive memory write driver strength based on write error rate (WER) are disclosed. In one aspect, a write driver strength control circuit is provided to adjust a write current provided to a resistive memory based on a WER of the resistive memory. The write driver strength control circuit includes a tracking circuit configured to determine the WER of the resistive memory based on write operations performed on resistive memory elements. The write driver strength control circuit includes a write current calculator circuit configured to compare the WER to a target WER that represents the desired yield performance level of the resistive memory. A write current adjust circuit in the write driver strength control circuit is configured to adjust the write current based on this comparison. The write driver strength control circuit adjusts the write current to perform write operations while reducing write errors associated with breakdown voltage.
Abstract:
A method includes, at a resistive memory device, determining an average effective reference resistance level based on a first effective reference resistance and a second effective reference resistance. The first effective reference resistance is based on a first set of reference cells of the resistive memory device and the second effective reference resistance is based on a second set of reference cells of the resistive memory device. The method includes trimming a reference resistance at least partially based on the average effective reference resistance level. Trimming the reference resistance includes, in response to determining that the first effective reference resistance is not substantially equal to the average effective reference resistance level, modifying one or more states of one or more magnetic tunnel junction devices associated with the first effective reference resistance.
Abstract:
Aspects of adjusting resistive memory write driver strength based on a mimic resistive memory write operation are disclosed. In one aspect, a write driver adjustment circuit is provided to adjust a write current provided by a write driver to a resistive memory for write operations. The write driver adjustment circuit includes a mimic write driver configured to provide a mimic write current that mimics the write current provided to the resistive memory. The mimic write current is applied to a mimic resistive memory that contains mimic resistive memory elements that mimic a resistance distribution of the resistive memory. When the mimic write current is applied, a mimic voltage is generated across the mimic resistive memory elements. The write driver adjustment circuit is configured to adjust the write current based on the mimic voltage so that the write current is sufficient for write operations, but low enough to reduce breakdown.
Abstract:
A memory module comprising a non-volatile cell array and a re-mapper. A page map table is stored in the non-volatile cell array, and includes mappings of old page addresses to new page addresses. The re-mapper is configured to direct memory operations referencing an old page address to the new page address that the old page address is mapped to. The mappings are created when a memory cell is determined to be in a failure state.
Abstract:
Methods and apparatus for generating a reference for use with a magnetic tunnel junction are provided. In an example, provided is a magnetoresistive read only memory including a magnetic tunnel junction (MTJ) storage element, a sense amplifier having a first input coupled to the MTJ storage element, and a reference resistance device coupled to a second input of the sense amplifier. The reference resistance device includes a plurality of groups of at least two reference MTJ devices. Each reference MTJ device in a respective group is coupled in parallel with each other reference MTJ device in the respective group. Each group is coupled in series with the other groups. This arrangement advantageously mitigates read disturbances and reference level variations, while saving power, reducing reference resistance device area, and increasing read speed.
Abstract:
A particular device includes a resistance-based memory device, a tag random-access memory (RAM), and a bit recovery (BR) memory. The resistance-based memory device is configured to store a data value and error-correcting code (ECC) data associated with the data value. The tag RAM is configured to store information that maps memory addresses of a main memory to wordlines of a cache memory, where the cache memory includes the resistance-based memory device. The BR memory is configured to store additional error correction data associated with the data value, where the BR memory corresponds to a volatile memory device.
Abstract:
A system and method to trim reference levels in a resistive memory is disclosed. In a particular embodiment, a resistive memory includes multiple sets of reference cells. The resistive memory also includes a reference resistance measurement circuit. A first set of reference cells is accessible by the reference resistance measurement circuit to measure a first effective reference resistance corresponding to the first set of reference cells. A second set of reference cells is accessible by the reference resistance measurement circuit to measure a second effective reference resistance corresponding to the second set of reference cells. The resistive memory also includes a trimming circuit configured to set a reference resistance based on the measured first effective resistance and the measured second effective resistance.
Abstract:
An apparatus includes a group of data cells and a reference cell coupled to the group of data cells. The reference cell includes four magnetic tunnel junction (MTJ) cells. Each of the four MTJ cells is coupled to a distinct word line. Each of the four MTJ cells includes an MTJ element and a single transistor. The single transistor of each particular MTJ cell is configured to enable read access to the MTJ element of the particular MTJ cell.