Abstract:
Various features presented herein facilitate early data transmission (EDT) in eMTC and NB-IoT. In certain aspects, a UE (e.g., an eMTC and/or NB-IoT type device), may receive an indication in a SIB from a base station that may enable EDT by the UE. The UE may transmit a random access request based on the SIB. The UE may further receive an MCS index in an RAR, and transmit a connection request (e.g., Msg3) to the base station based on the MCS index and the indication in the SIB. Some aspects described herein relate to an improved rate matching technique. In certain aspects, a UE may be configured to transmit a connection request message to a base station based on at least one of an increased number of RVs than a number of RVs for other transmissions from the UE or rate matching performed across more than one subframe.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may measure a physical channel such as a narrowband physical broadcast channel (NPBCH) to supplement (e.g., or as an alternative to) reference signal measurements when determining a received signal measurement, such as a received signal strength or received signal quality of a cell. A base station may transmit an indication to a UE that identifies the frequency at which a portion of NPBCH transmissions (e.g., reserved fields of a master information block (MIB)) is expected to change from one NPBCH transmission to another. The UE may adjust its utilization of NPBCH for determining the received signal measurement based on the indication. Further, the UE may communicate with the cell based on the determination of the received signal measurement, which are based on the indication.
Abstract:
Methods, systems, and devices for wireless communication are described. Data for a broadcast or multicast service may be sent over a control channel. A network device may broadcast a message to indicate a plurality of enhanced multimedia broadcast multicast service (eMBMS) services offered by the network. The mobile device may transmit an indication to the network device identifying an eMBMS service of interest. The network device may transmit a configuration message before broadcasting or multicasting data of the eMBMS service of interest. The configuration message may notify the mobile device of a control channel on which to receive the data related to the eMBMS service. The network device may then broadcast or multicast the eMBMS service data on the control channel. The data may be segmented at a particular protocol layer and mapped to several transmission time intervals within each repetition of the control channel.
Abstract:
Methods, systems, and devices for wireless communication are described. The method includes transmitting a first barring bitmap associated with a first configuration of user equipments (UEs) based at least in part on a decision to implement access class barring (ACB), determining a radio access network (RAN) provides network service to UEs of a second configuration different from the first configuration, transmitting a delay tolerant barring indicator associated with the second configuration based at least in part on the decision to implement ACB and determining that the RAN provides network services to UEs of a second configuration.
Abstract:
Various embodiments implemented on a multi-subscription-capable communication device (e.g., a mobile communication device capable of supporting more than one wireless subscription) enable a data connection for a blanked subscription to be kept alive during transmit (Tx) blanking by ensuring at least one Packet Data Traffic Channel (PDTCH) transmission is sent to the network before the network's counter for PDTCH transmissions expires.
Abstract:
Methods and devices are disclosed for enabling improved performance on a single-transmit multi-SIM wireless communication device. The wireless communication device may detect a voice communication on a modem stack associated with the first SIM and a data communication on a modem stack associated with the second SIM. The wireless communication device may identify a data rate used by the voice codec to encode uplink traffic channel (TCH) bursts in the voice communication, and determine whether the identified data rate used by the voice codec permits TCH burst cancellation. If it is determined that the identified data rate used by the voice codec permits TCH burst cancellation, the wireless communication device may downgrade a portion of the uplink TCH bursts scheduled on the modem stack associated with the first SIM.
Abstract:
Exemplary embodiments are directed to operation of a device supporting multiple SIMs. A method may include detecting a paging collision scenario between a first subscription and at least a second subscription. The method may further include modifying a page reading operation of at least one of the first subscription and the at least a second subscription to avoid a paging collision between the first subscription and the at least a second subscription. Other aspects, embodiments, and features are also claimed and described in the application.
Abstract:
Various embodiments implemented on a multi-subscription-capable communication device (e.g., a mobile communication device capable of supporting more than one wireless subscription) enable a data connection for a blanked subscription to be kept alive during transmit (Tx) blanking by ensuring at least one Packet Data Traffic Channel (PDTCH) transmission is sent to the network before the network's counter for PDTCH transmissions expires.
Abstract:
A method for cell reselection by a wireless communication device is described. The method includes signal strength of cells in one or more inter-radio access technology (inter-RAT) frequencies while camped on a serving cell in a connected mode. On releasing the connected mode and before moving to idle mode on the serving cell, the method also includes prioritizing the cells in the one or more inter-RAT frequencies based on a RAT preference order and the signal strength. The method further includes reselecting to a highest priority cell whose signal strength meets a cell selection criterion.
Abstract:
A method for cell selection or cell re-selection by a wireless communication device in a Global System for Mobile Communications (GSM) network is described. The method includes obtaining signal-to-noise ratios (SNRs) associated with multiple cells. The method also includes delaying a camping decision until a broadcast control channel (BCCH) of a strong SNR cell is decoded. The SNR of the strong SNR cell is greater than the SNR of a high received signal strength indication (RSSI) cell. The method further includes camping on the strong SNR cell.