Abstract:
An image sensor includes pixel circuitry with a photodiode to receive light and output a pixel signal. The image sensor also includes readout circuitry with a first sample and hold transistor coupled to the pixel circuitry, and a first capacitor coupled to the first sample and hold transistor to receive the pixel signal. A second sample and hold transistor is coupled to the pixel circuitry, and a second capacitor is coupled to the second sample and hold transistor to receive the pixel signal. A first output switch is coupled to output the pixel signal from the first capacitor, and a second output switch is coupled to output the pixel signal from the second capacitor. A boost transistor is coupled to connect the first output switch and the second output switch when the boost transistor is turned on.
Abstract:
A ramp generator includes an integrator including a first stage having first and second inputs and first and second outputs, and a second stage including first and second transistors coupled between a power supply rail and ground. A node between the first and second transistors is coupled to the output of the integrator amplifier. A control terminal of the first transistor is coupled to the first output of the first stage, and a control terminal of the second transistor is coupled to the second output of the first stage. A first current flows from the output to ground during a ramp event in the ramp signal generated from the output. Trimming circuitry is coupled to the output of the integrator amplifier to provide a second current to the output of the integrator amplifier in response to trimming inputs. The second current substantially matches the first current.
Abstract:
An image sensor includes pixel circuitry with a photodiode to receive light and output a pixel signal. The image sensor also includes readout circuitry with a first sample and hold transistor coupled to the pixel circuitry, and a first capacitor coupled to the first sample and hold transistor to receive the pixel signal. A second sample and hold transistor is coupled to the pixel circuitry, and a second capacitor is coupled to the second sample and hold transistor to receive the pixel signal. A first output switch is coupled to output the pixel signal from the first capacitor, and a second output switch is coupled to output the pixel signal from the second capacitor. A boost transistor is coupled to connect the first output switch and the second output switch when the boost transistor is turned on.
Abstract:
A hybrid-bonded image sensor has a photodiode die with multiple macrocells; each macrocell has at least one photodiode and a coupling region. The coupling regions couple to a coupling region of a macrocell unit of a supporting circuitry die where they feed an input of an amplifier and a feedback capacitor. The feedback capacitor also couples to output of the amplifier, and the amplifier inverts between the input and the output. The method includes resetting a photodiode of the photodiode die; coupling signal from photodiode through the bond point to the supporting circuitry die to a feedback capacitor and to an input of the amplifier, the feedback capacitor also coupled to an inverting output of the amplifier; and amplifying the signal with the amplifier, where a capacitance of the feedback capacitor determines a gain of the amplifier.
Abstract:
A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
Abstract:
A programmable current source for use with a time of flight pixel cell includes a first transistor. A current through the first transistor is responsive to a gate-source voltage of the first transistor. A current control circuit is coupled to the first transistor and coupled to a reference current source to selectively couple a reference current of the reference current source through the first transistor during a sample operation. A sample and hold circuit is coupled to the first transistor to sample a gate-source voltage of the first transistor during the sample operation. The sample and hold circuit is coupled to hold the gate-source voltage during a hold operation after the sample operation substantially equal to the gate-source voltage during the sample operation. A hold current through the first transistor during the hold operation is substantially equal to the reference current.
Abstract:
An imaging system includes a pixel array including a plurality of pixels. Each one of the pixels includes a single photon avalanche diode (SPAD) coupled to detect photons in response to incident light. A photon counter included in readout circuitry coupled to each pixel to count a number of photons detected by each pixel. The photon counter is coupled to stop counting photons in each pixel when a threshold photon count is reached for each pixel. Control circuitry is coupled to the pixel array to control operation of the pixel array. The control circuitry includes an exposure time counter coupled to count a number of exposure times elapsed before each pixel detects the threshold photon count. Respective exposure time counts and photon counts are combined for each pixel of the pixel array.
Abstract:
An imaging device includes a pixel array with 2×2 pixel circuits arranged in rows and columns. Each 2×2 pixel circuit includes 4 photodiodes. Bitlines are coupled to the 2×2 pixel circuits and a color filter array is disposed over photodiodes of the pixel array. The color filter array includes color filters having a first color, color filters having a second color, color filters having a third color. The photodiodes of each 2×2 pixel circuits are covered by one of the color filters. Photodiodes covered by color filters having the first color and photodiodes covered by color filters having the second color are configured to provide non-phase detection (non-PD) information. Photodiodes covered by color filters having the third color are configured to provide phase detection (PD) information. Half of the 2×2 pixel circuits have the photodiodes covered by color filters having the third color.
Abstract:
An imaging device includes a pixel array with 2×2 pixel circuits arranged in rows and columns. Each 2×2 pixel circuit includes 4 photodiodes. Bitlines are coupled to the 2×2 pixel circuits and a color filter array is disposed over photodiodes of the pixel array. The color filter array includes color filters having a first color, color filters having a second color, color filters having a third color. The photodiodes of each 2×2 pixel circuits are covered by one of the color filters. Photodiodes covered by color filters having the first color and photodiodes covered by color filters having the second color are configured to provide non-phase detection (non-PD) information. Photodiodes covered by color filters having the third color are configured to provide phase detection (PD) information. Half of the 2×2 pixel circuits have the photodiodes covered by color filters having the third color.
Abstract:
An imaging device includes a pixel array of pixel circuits arranged in rows and columns. Bitlines are coupled to the pixel circuits. Clamp circuits are coupled to the bitlines. Each of the clamp circuits includes a clamp short transistor to a power line and a respective one of the bitlines. The clamp short transistor is configured to be switched in response to a clamp short enable signal. A first diode drop device is coupled to the power line. A clamp idle transistor is coupled to the first diode drop device such that the first diode drop device and the clamp idle transistor are coupled between the power line and the respective one of the bitlines. The clamp idle transistor is configured to be switched in response to a clamp idle enable signal.