Abstract:
A white light LED assembly has at least two kinds of light-emitting units. The units can be a white light-emitting unit composed of red, green and blue LEDs, a white light-emitting unit composed of a blue and yellowish-green LEDs, a white light-emitting unit composed of a blue LED and yellow phosphor, or a white light-emitting units composed of UV LED and red, green and blue phosphors. The white light LED assembly according to the present invention has satisfactory efficiency and color rendering property as well as flexible phosphor usage.
Abstract:
This invention relates to the field of materials of the photorefractive crystal. The composition of these crystals is Li1−xNb1+yO3: Fem, Mn, where M can be magnesium, indium, or zinc; when using q to denote the ion valence of M (q=2 when M is Mg or Zn, and q=3 when M is In), the values of x, y, m, and n are in the range of 0.05≦x≦0.13, 0.00≦y≦0.01, 5.0×10−5≦m≦7.5×10−4, and 0.02≦qn≦0.13. This invention greatly improves the photorefractive properties of LiNbO3 crystals: makes it have a high diffraction efficiency (more than 68%), a fast response speed for photorefraction (an order of magnitude faster than iron doped LiNbO3), and a high resistance to optical scattering (the light intensity threshold to photorefractive fan scattering near two orders of magnitude larger than LiNbO3: Fe). This invention is an excellent three-dimensional optical storage material and has a vast potential market.
Abstract translation:本发明涉及光折射晶体的材料领域。 这些晶体的组成为Li1-xNb1 + yO3:Fem,Mn,其中M可以是镁,铟或锌; 当使用q表示M的离子价(当M是Mg或Zn时为q = 2,当M为In时为q = 3),x,y,m和n的值在0.05 <= x <= 0.13,0.00 <= y <= 0.01,5.0×10 -5≤= 7.5×10 -4,0.02 <= q n <= 0.13。 本发明大大提高了LiNbO3晶体的光折射性能:使其具有高的衍射效率(大于68%),光折射的快速响应速度(比掺杂铁的LiNbO 3快一个数量级)和高的光散射性 (光强度阈值对光折变散射散射近于两个数量级大于LiNbO3:Fe)。 本发明是一种优良的三维光学存储材料,具有广阔的市场潜力。
Abstract:
A motor and a rotor thereof are provided. Taking the distance between the two endpoints of a permanent magnet of a motor rotor that are on the side away from the center of an iron core as the length L of the permanent magnet, and the distance between a line connecting the two endpoints of the permanent magnet that are on the side away from the center of the iron core and the center point on the side of the permanent magnet that is close to the centerline of the iron core as the width H of the permanent magnet, then H/L ≧ 1/10. By adjusting the relationship between the length L and width H of the permanent magnet, the air gap magnetic density of the permanent magnet can be effectively increased.
Abstract:
A motor rotor includes an iron core and a permanent magnet arranged inside the iron core, wherein, a plurality of groups of mounting grooves are arranged in the iron core in a circumferential direction of the iron core, and each group of mounting grooves comprises two or more than two mounting grooves arranged at intervals in a radial direction of the iron core; and a plurality of groups of permanent magnets are provided, and each permanent magnet in each group of permanent magnets is correspondingly embedded in the corresponding mounting groove of each group of mounting grooves. A motor having the motor rotor is further provided, and the magnetic reluctance torque of the motor rotor is increased, thereby increasing the output torque of the motor and the efficiency of the motor.
Abstract:
A motor rotor includes an iron core and permanent magnets provided inside the iron core. The iron core is provided with sets of mounting grooves on the iron core in the peripheral direction of the iron core, each set of mounting grooves having two or more mounting grooves provided intermittently in the radial direction of the iron core. There are sets of permanent magnets, the individual permanent magnet of each set of permanent magnets correspondingly being embedded into the individual mounting grooves of each set of mounting grooves; there is an island region between the outermost layer of mounting grooves and the periphery of the iron core, and an enhancing hole is provided in the island region, an enhancing rod being provided in the enhancing hole. A motor includes a motor stator and the motor rotor, with the motor rotor provided inside the motor stator.
Abstract:
A substrate, manufacturing method thereof, and an organic electroluminescent device using the same are provided, belonging to photoelectron field. The substrate includes a paper layer (102), a first protection layer (101) formed on the lower surface of the paper layer, and a second protection layer (103) formed on the upper surface and covering the same of the paper layer. The substrate, solves problems of paper which is easy to absorb humidity and has high permeability of oxygen by a protection processing that said paper is coated with the heat seal film of polyethylene terephthalate coated with Polyvinyl Dichloride. At the meantime, the substrate has the advantages of cheap material, extensive sources, simple manufacturing process, good flexibility of the substrate, and good capability of preventing the permeability of water as well.
Abstract:
A waterway switch device has a waterway mechanism, an execution part, an operation part and a transmission part. The waterway mechanism has a main body, and an inlet and a plurality of outlets are arranged on the main body. The execution part is mounted in the main body and has a moving piece, and at least the switch of the outlets to the inlet can be achieved through the relative movement between the moving piece and the main body. The operation part has a handle. The transmission part has a wire rope, one end of the wire rope is connected with the moving piece, the other end is connected with the handle in a transmission manner. The handle rotates relatively, and the wire rope is driven to move, and the moving piece can move relative to the main body.
Abstract:
The present invention relates to a polymeric electroluminescent device and a method for preparing the same. The device comprises a conductive anode substrate, a hole injecting layer, a hole transportation layer, an electron barrier layer, a light-emitting layer, an electron transportation layer, an electron injecting layer and a cathode laminated in succession, and the material for the electron barrier layer is one selected from lithium fluoride, lithium carbonate, lithium oxide and lithium chloride. By preparing lithium compound as an inorganic electron barrier layer, the polymeric electroluminescent device is made of cheap materials which are easily obtainable, and most importantly has a low work function of approximately 2.0 eV, which can form a transition potential barrier of approximately 1.0 eV with the light-emitting layer and can limit the recombination of electrons and holes as far as possible, thereby increasing the recombination possibility of excitons and in turn improving the light-emitting efficiency of the polymeric electroluminescent device.
Abstract:
Disclosed are an organic electroluminescent device having ternary doped hole transportation layer and a preparation method therefor. The electroluminescent device comprises a conductive anode substrate (1), a ternary doped hole transportation layer (2), a light-emitting layer (3), an electron transportation layer (4), an electron injecting layer (5) and a cathode layer (6), wherein the material for the ternary doped hole transportation layer (2) is a mixed material made by doping a cerium salt and a hole transportation material into a metal compound. The electroluminescent device forms p-doping by doping the cerium salt and the hold transportation material into the metal compound, which improves the ability of injecting and transporting holes, and increases the efficiency of light emission. Since the material for the ternary doped hole transportation layer (2) is predominately a metal compound, the process difficulty and manufacturing costs are reduced, facilitating industrial production and commercial applications.
Abstract:
The present invention relates to compounds of Formula (I), methods for preparing these compounds, compositions, intermediates and derivatives thereof and for treating a condition including but not limited to ankylosing spondylitis, artherosclerosis, arthritis (such as rheumatoid arthritis, infectious arthritis, childhood arthritis, psoriatic arthritis, reactive arthritis), bone-related diseases (including those related to bone formation), breast cancer (including those unresponsive to anti-estrogen therapy), cardiovascular disorders, cartilage-related disease (such as cartilage injury/loss, cartilage degeneration, and those related to cartilage formation), chondrodysplasia, chondrosarcoma, chronic back injury, chronic bronchitis, chronic inflammatory airway disease, chronic obstructive pulmonary disease, diabetes, disorders of energy homeostasis, gout, pseudogout, lipid disorders, metabolic syndrome, multiple myeloma, obesity, osteoarthritis, osteogenesis imperfecta, osteolytic bone metastasis, osteomalacia, osteoporosis, Paget's disease, periodontal disease, polymyalgia rheumatica, Reiter's syndrome, repetitive stress injury, hyperglycemia, elevated blood glucose level, and insulin resistance.