Abstract:
Disclosed herein is a device-to-device discovery method in a wireless communication system. A device determines whether a first subframe for a physical layer uplink channel or signal and a second subframe for the discovery signal are the same. The device transmits the physical layer uplink channel or signal without transmitting or receiving the discovery signal, in the same subframe, when the first subframe and the second subframe are the same.
Abstract:
In a wireless communication system which supports dual connection between a terminal and at least two base stations, a terminal provides an uplink transmission method based on uplink scheduling information, and a base station provides an uplink scheduling method for sharing information on a type of subframe and allocating an uplink resource.
Abstract:
A method of transmitting and receiving a control channel in a wireless communication system is provided. A base station allocates a data channel to a radio resource, adds start position information of the data channel into a payload of a control channel, and performs signaling for indication information on the start position information added into the payload of the control channel to a terminal. Accordingly, the legacy system and the enhanced system can efficiently transmit a control channel.
Abstract:
Provided is a communication system that transmits a control channel using a downlink. The communication system may transmit, to the terminal, transmission information of uplink allocation information that indicates whether uplink allocation information is transmitted using a downlink, and the terminal may determine whether the uplink allocation information is included in a downlink frame, based on the transmission information of uplink allocation information. The base station may transmit, to the terminal, information associated with a resource which has a possibility of being used for transmission of a physical downlink control channel (PDCCH), and the terminal may decode the PDCCH in the resource which has a possibility of being used for transmission of the PDCCH.
Abstract:
Disclosed is a method for enhancing a small cell. A method for enhancing a small cell in a terminal applying inter-site CA includes the steps of: causing a terminal to transmit the uplink control information (UCI) of at least one of the macro cells controlled by a macro cell base station through the macro cell; and causing the terminal to transmit the uplink control information of at least one of the small cells controlled by a small cell base station through the small cell.
Abstract:
Disclosed is a method for signaling control information for coordinated multipoint (CoMP) transmission in a wireless communication system. The control information signaling method for CoMP transmission is performed by a base station and comprises providing, through RRC signaling, a terminal with setup information on each CSI-RS resource of a CoMP measurement group which is set in the terminal; and selectively providing, through DCI, the terminal with control information which indicates mapping of the PDSCH resource element corresponding to terminal and at least either pseudo-same positionality information of CSI-RS or pseudo-same positionality information of DM-RS. Thus, control information signaling for coordinated multipoint transmission can be efficiently performed.
Abstract:
A communication method of a terminal that may have dual connectivity to a first base station and a second base station is provided. The terminal receives a first Radio Resource Control (RRC) message from the first base station only through a first interface between the first base station and the terminal. The terminal transmits a second RRC message to the first base station only through the first interface.
Abstract:
A device-to-device (D2D) communication method in a wireless mobile communication system is provided. A channel state measurement method for adaptive transmission of cellular network-based D2D communication, a data transmission/reception method of D2D communication, and a power control method for transmission power control of a D2D link in the D2D communication are provided. Specifically, cellular network-based D2D communication methods optimized for a Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) system are provided. The above-described methods are also applicable to various cellular mobile communication systems as well as the 3GPP LTE system.
Abstract:
Data transmission and reception is provided by configuring control channels in a wireless communication system using a plurality of carriers. User equipment (UE) may monitor physical downlink control channel (PDCCH) candidates within common search spaces (CSSs) and User Equipment-specific search spaces (USSs). If the UE is configured with cross-carrier scheduling, when two PDCCH candidates originating from a CSS and a USS, respectively, have cyclic redundancy check (CRC) scrambled by the same Radio Network Temporary Identifier (RNTI) and have a common payload size and the same first control channel element (CCE) index, the UE may interpret that only the PDCCH originating from the CSS is transmitted, thereby solving ambiguity of downlink control information (DCI) detection.
Abstract:
A reference signal (RS) transmission system to transmit a channel state information (CSI) RS for extraction of CSI to a relay and a macro terminal is disclosed. The base station transmits information on a sub frame containing the CSI RS to the relay or the macro terminal. The macro terminal and the relay receive the CSI RS using the information on the sub frame. The macro terminal and the relay extract the CSI using the CSI RS and transmit the extracted CSI to the base station.