Abstract:
Aspects of a method and system for installation and configuration of a femtocell are provided. In this regard, information for configuring a femtocell to operate in a specified location may be received by the femtocell and may be utilized to configure one or more parameters of the femtocell. Once the femtocell is operational the parameters may be updated and/or optimized based on one or both of characterizations of cellular signals and/or information received from a femtocell registry. In this manner the femtocell may be reconfigured utilizing the updated and/or optimized parameters. The one or more parameters may be configured based on attributes of the location in which the femtocell is to operate. The one or more parameters may be configured based on a location, number, and/or coverage area of other femtocells The parameters may comprise one or more of power levels, frequency of operation, and/or antenna beam pattern.
Abstract:
A wireless communication device is implemented to include a communication interface and a processor. The processor is configured to process communications associated with the other wireless communication devices within the wireless communication system to determine one or more traffic characteristics of those communications as well as one or more class characteristics of the other wireless communication devices. The processor is configured to classify the communications into one or more access categories based on the one or more traffic characteristics and is configured to classify the other devices into one or more device class categories based on the one or more class characteristics. The processor is then configured to generate one or more channel access control signals based on these classifications. The communication interface of the device is configured to transmit the one or more channel access control signals to one or more of the other devices.
Abstract:
Systems and methods that provide channel-adaptive antenna selection in multi-antenna element communication systems are provided. In one embodiment, a method that selects a subset of receive antennas of a receiver to receive a transmitted RF signal may include, for example, one or more of the following: establishing possible subsets of the receive antennas; determining sets of channel parameter statistics corresponding to the possible subsets of the receive antennas; computing output bit error rates of the receiver, each output bit error rate being computed based on at least one set of channel parameter statistics; selecting a particular possible subset of the receive antennas based upon a criterion predicated on the computed output bit error rates; and connecting one or more RF chains of the receiver to the receive antennas of the selected particular possible subset.
Abstract:
A wireless device includes processing circuitry, a receiver section, a transmitter section, and an antenna. The processing circuitry determines a set of information signals of a RF Multiple Frequency Bands Multiple Standards (MFBMS) signal. The receiver section down-converts a portion of the RF MFBMS signal by one or more respective shift frequencies to produce a corresponding baseband/low Intermediate Frequency (BB/IF) information signal from which the processing circuitry extracts data. The transmitter section converts a respective BB/IF information signal received from the processing circuitry by a respective shift frequency to produce a corresponding RF information signal and a combiner that combines the RF information signals to form a RF MFBMS signal. The receiver section and the transmitter section include ADCs and/or DACs, respectively, that are adjustable based upon characteristics of the RF MFBMS signal, the BB/IF MFBMS signal, and/or based upon signals carried therein, e.g., modulation type, SNR requirements, etc.
Abstract:
An access device receives content from a broadband IP network to be communicated to a wireless handset over a radio access network (RAN). The access device acquires a user profile utilized in the radio network for the wireless handset. Based on the acquired user profile, the access device determines transmission parameters utilized for communicating the received content to the wireless handset using an air interface protocol over the radio access network. A security level and/or a security protocol, a transcoding mechanism, and/or transmission bit rate are determined based on the acquired user profile. A resolution, transmission bit rate, coding structure, security protocol and/or security level for transmitting the received content to the wireless handset are adjusted based on the acquired user profile. Alternately, the access device is enabled to receive content from the wireless handset using a transmission profile determined Lased on user profile of the wireless handset.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. An environmental monitoring receiver processes received RF signals over a broadband spectrum and that generates environmental data in response thereto. A processing module processes the environmental data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the environmental data. In an embodiment of the present invention, the environmental monitoring receiver can be implemented via one of the plurality of transceivers when operating in an environmental monitoring mode.
Abstract:
A configurable antenna structure includes a plurality of switches, a plurality of antenna components, and a configuration module. The configuration module is operable to configure the plurality of switches and the plurality of antenna components into a first antenna for receiving a multiple frequency band multiple standard (MFBMS) signal. The configuration module continues processing by identify a signal component of interest of a plurality of signal components of interest within the MFBMS signal. The configuration module continues processing by configuring the plurality of switches and the plurality of antenna components into a second antenna.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein the plurality of transceivers includes at least one cognitive radio transceiver that is configured based on cognitive transceiver configuration data received from a management unit in communication with the multiservice communication device via a control channel.
Abstract:
A wireless communication device is configured to generate frames based on any of a number of different frame formats for transmission to one or more other recipient wireless communication devices. The frame may be implemented to include data intended for two or more recipient devices. The device encodes first data intended for a first recipient device using first one or more coding parameters and encodes second data intended for a second recipient device using second one or more coding parameters. The manner by which the first and second data have been encoded is indicated within one or more other fields within the frames based on the selected frame format. In one example, a single preamble specifies the first and second one or more coding parameters. In another example, an initial preamble and one or more respective sub-preambles specify the first and second one or more coding parameters.
Abstract:
In some aspects, the disclosure is directed to methods and systems for coexistence management. A first access point is scheduled a time to begin transmission of a packet to a user device in an unlicensed frequency band using a first RAT. The time to begin the transmission is scheduled to avoid transmission overlap with a second access point using a second RAT in the unlicensed frequency band, and scheduled according to information from the second access point regarding operation in the unlicensed frequency band using the second RAT. One of the first and second RATs includes one of a WLAN RAT or a LTE based RAT, and another of the first and second RATs includes a remaining one of the WLAN RAT or the LTE based RAT, in one or more embodiments. The first access point receives updated information regarding operation in the unlicensed frequency band using the second RAT. Using the updated information, an updated time for the first access point to begin the transmission using the first RAT is determined, the updated time determined to avoid transmission overlap with the second RAT in the unlicensed frequency band. The first access point transmits, according to the determined updated time, the packet in the unlicensed frequency band using the first RAT.