Abstract:
A method is performed at an electronic device with a display, touch-sensitive surface and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes displaying a user interface with a first region and a second region embedded in the first, the second region also being independently scrollable such that its content can be moved without moving other content in the first region. In response to detecting a contact and movement of the contact when a focus selection is over the second region, and when the contact has a maximum intensity that is above a respective intensity threshold, content in the second region is translated on the display without other content translating the first region. When the contact has a maximum intensity that is below a respective intensity threshold, content in the first region is translated on the display.
Abstract:
An electronic device, with a touch-sensitive surface and a display, includes one or more sensors to detect intensity of contacts with the touch-sensitive surface. The device detects a contact on the touch-sensitive surface while a focus selector corresponding to the contact is at a respective location on the display associated with additional information not initially displayed on the display. While the focus selector is at the respective location, upon determining that the contact has an intensity above a respective intensity threshold before a predefined delay time has elapsed with the focus selector at the respective location, the device displays the additional information associated with the respective location without waiting until the predefined delay time has elapsed; and upon determining that the contact has an intensity below the respective intensity threshold, the device waits until the predefined delay time has elapsed to display the additional information associated with the respective location.
Abstract:
An electronic device: displays a plurality of objects, where two or more of the objects are grouped together in a group of objects and one or more other objects of the plurality of objects are not in the group; detects a first gesture that includes a first press input at a location that corresponds to a respective object in the group. in response to detecting the first gesture, the device selects one or more of the plurality of objects as a set of selected objects. If the first press input had a maximum intensity below a first intensity threshold, the set includes the objects in the group and excludes the other objects that are not in the group. If the first press input had an intensity above the first intensity threshold, the set includes the respective object and excludes one or more objects in the group and the other objects that are not in the group.
Abstract:
An electronic device with a touch-sensitive surface and a display displays a user interface object on the display, detects a contact on the touch-sensitive surface, and detects a first movement of the contact across the touch-sensitive surface, the first movement corresponding to performing an operation on the user interface object, and, in response to detecting the first movement, the device performs the operation and generates a first tactile output on the touch-sensitive surface. The device also detects a second movement of the contact across the touch-sensitive surface, the second movement corresponding to reversing the operation on the user interface object, and in response to detecting the second movement, the device reverses the operation and generates a second tactile output on the touch-sensitive surface, where the second tactile output is different from the first tactile output.
Abstract:
The security level and/or other device behavior, configurations, or settings on a mobile device can be modified based on the location of the mobile device. The location of the mobile device can be determined by analyzing location aspects present at a location, where any parameters or attributes of a location that can assist in identifying a particular location may be used as location aspects. In a setup process, the mobile device identifies available aspects at a location and can use the available aspects to determine a location context associated with a location. In a use example, the device identifies available aspects at a location and determines whether the available aspects match a previously defined location context. If the available aspects match the previously defined location context, device behavior, configurations, or settings on a mobile device can be modified.
Abstract:
The security level and/or other device behavior, configurations, or settings on a mobile device can be modified based on the location of the mobile device. The location of the mobile device can be determined by analyzing location aspects present at a location, where any parameters or attributes of a location that can assist in identifying a particular location may be used as location aspects. In a setup process, the mobile device identifies available aspects at a location and can use the available aspects to determine a location context associated with a location. In a use example, the device identifies available aspects at a location and determines whether the available aspects match a previously defined location context. If the available aspects match the previously defined location context, device behavior, configurations, or settings on a mobile device can be modified.
Abstract:
In any context where a user can view multiple different content items, switching among content items is provided using an array mode. In a full-frame mode, one content item is visible and active, but other content items may also be open. In response to user input the display can be switched to an array mode, in which all of the content items are visible in a scrollable array. Selecting a content item in array mode can result in the display returning to the full-frame mode, with the selected content item becoming visible and active. Smoothly animated transitions between the full-frame and array modes and a gesture-based interface for controlling the transitions can also be provided.
Abstract:
In some embodiments, a multifunction device with a display and a touch-sensitive surface creates a plurality of workspace views. A respective workspace view is configured to contain content assigned by a user to the respective workspace view. The content includes application windows. The device displays a first workspace view in the plurality of workspace views on the display without displaying other workspace views in the plurality of workspace views and detects a first multifinger gesture on the touch-sensitive surface. In response to detecting the first multifinger gesture on the touch-sensitive surface, the device replaces display of the first workspace view with concurrent display of the plurality of workspace views.
Abstract:
A computing device having a touch-sensitive surface and a display, detects a stylus input on the touch-sensitive surface while displaying a user interface. A first operation is performed in the user interface in accordance with a determination that the stylus input includes movement of the stylus across the touch-sensitive surface while the stylus is detected on the touch-sensitive surface. A second operation different from the first operation is performed in the user interface in accordance with a determination that the stylus input includes rotation of the stylus around an axis of the stylus while the stylus is detected on the touch-sensitive surface. A third operation is performed in the user interface in accordance with a determination that the stylus input includes movement of the stylus across the touch-sensitive surface and rotation of the stylus around an axis of the stylus while the stylus is detected on the touch-sensitive surface.
Abstract:
An electronic device that is in communication with a display generation component, and sensor(s) to detect location of an input object displays a content selection object within selectable content, wherein the content selection object includes a first edge and a second edge. The device detects an input by the input object, including detecting the input object at a first hover location that corresponds to the first edge of the content selection object. In response to detecting the first portion of the input: in accordance with a determination that the first portion of the input meets first criteria that require the input object meets proximity criteria with respect to the content selection object, the device changes an appearance of the first edge relative to the second edge of the content selection object to indicate that the first edge will be selected for movement when the input object meets second criteria.