Abstract:
Mobile devices with ultrasound ranging are disclosed. A mobile device with ultrasound ranging can include a multifunctional component capable of performing multiple functions in the device, where the component can function as an ultrasound transmitter capable of transmitting an ultrasound signal to a proximate device. In some examples, the component can also function as a power button capable of powering the device up and down. In some examples, the component can also function as a home button capable of causing a home page to display on the device. The mobile device can further include an ultrasound receiver capable of receiving an ultrasound signal from the proximate device, where the device can calculate a range of the proximate device based on a time lapse associated with the received ultrasound signal.
Abstract:
Mobile devices with ultrasound ranging are disclosed. A mobile device with ultrasound ranging can include a multifunctional component capable of performing multiple functions in the device, where the component can function as an ultrasound transmitter capable of transmitting an ultrasound signal to a proximate device. In some examples, the component can also function as a power button capable of powering the device up and down. In some examples, the component can also function as a home button capable of causing a home page to display on the device. The mobile device can further include an ultrasound receiver capable of receiving an ultrasound signal from the proximate device, where the device can calculate a range of the proximate device based on a time lapse associated with the received ultrasound signal.
Abstract:
Ultrasonic ranging for mobile devices is disclosed. A mobile device using ultrasonic ranging can include an ultrasound transmitter capable of emitting an ultrasound signal for detection by a proximate device and an ultrasound receiver capable of receiving an ultrasound signal from the proximate device. The mobile device can then use a time lapse associated with one or both of these ultrasound signals to find a range to the proximate device.
Abstract:
Compensation for sensors in a touch and hover sensing device is disclosed. Compensation can be for sensor resistance and/or sensor sensitivity variation that can adversely affect touch and hover measurements at the sensors. To compensate for sensor resistance, the device can gang adjacent sensors together so as to reduce the overall resistance of the sensors. In addition or alternatively, the device can drive the sensors with voltages from multiple directions so as to reduce the effects of the sensors' resistance. To compensate for sensor sensitivity variation (generally at issue for hover measurements), the device can apply a gain factor to the measurements, where the gain factor is a function of the sensor location, so as to reduce the sensitivity variation at different sensor locations on the device.
Abstract:
The security level and/or other device behavior, configurations, or settings on a mobile device can be modified based on the location of the mobile device. The location of the mobile device can be determined by analyzing location aspects present at a location, where any parameters or attributes of a location that can assist in identifying a particular location may be used as location aspects. In a setup process, the mobile device identifies available aspects at a location and can use the available aspects to determine a location context associated with a location. In a use example, the device identifies available aspects at a location and determines whether the available aspects match a previously defined location context. If the available aspects match the previously defined location context, device behavior, configurations, or settings on a mobile device can be modified.
Abstract:
The security level and/or other device behavior, configurations, or settings on a mobile device can be modified based on the location of the mobile device. The location of the mobile device can be determined by analyzing location aspects present at a location, where any parameters or attributes of a location that can assist in identifying a particular location may be used as location aspects. In a setup process, the mobile device identifies available aspects at a location and can use the available aspects to determine a location context associated with a location. In a use example, the device identifies available aspects at a location and determines whether the available aspects match a previously defined location context. If the available aspects match the previously defined location context, device behavior, configurations, or settings on a mobile device can be modified.
Abstract:
Ground detection of a touch sensitive device is disclosed. The device can detect its grounded state so that poor grounding can be selectively compensated for in touch signals outputted by the device. The device can include one or more components to monitor certain conditions of the device. The device can analyze the monitored conditions to determine the grounding condition of the device. The device can apply a function to compensate its touch signal outputs if the device determines that it is poorly grounded. Conversely, the device can omit the function if the device determines that it is well grounded.
Abstract:
Touch and hover switching is disclosed. A touch and hover sensing device can switch between a touch mode and a hover mode. During a touch mode, the device can be switched to sense one or more objects touching the device. During a hover mode, the device can be switched to sense one or more objects hovering over the device. The device can include a panel having multiple sensors for sensing a touching object and/or a hovering object and a touch and hover control system for switching the device between the touch and hover modes. The device's touch and hover control system can include a touch sensing circuit for coupling to the sensors to measure a capacitance indicative of a touching object during the touch mode, a hover sensing circuit for coupling to the sensors to measure a capacitance indicative of a hovering object during the hover mode, and a switching mechanism for switching the sensors to couple to either the touch sensing circuit or the hover sensing circuit. The device can switch modes based on a condition of the device, such as an expiration of a timer or a relative distance of an object from the panel.
Abstract:
Detecting a signal from a touch and hover sensing device, in which the signal can be indicative of concurrent touch events and/or hover events, is disclosed. A touch event can indicate an object touching the device. A hover event can indicate an object hovering over the device. The touch and hover sensing device can ensure that a desired hover event is not masked by an incidental touch event, e.g., a hand holding the device, by compensating for the touch event in the detected signal that represents both events. Conversely, when both a hover event and a touch event are desired, the touch and hover sensing device can ensure that both events are detected by adjusting the device sensors and/or the detected signal. The touch and hover sensing device can also detect concurrent hover events by identifying multiple peaks in the detected signal, each peak corresponding to a position of a hovering object.
Abstract:
Ultrasonic transmitters that can be used for ranging in mobile devices are disclosed. In some examples, an ultrasonic transmitter device can be configured to transmit ultrasonic signals in multiple frequency bands. The transmitter can include multiple sets of ultrasonic transmitters, each capable of transmitting in a different frequency band. In other examples, frequency-adjustable ultrasonic transmitters can be used. The transmitters can be configured to change one or more of a length, mass, or tension of a membrane to change a resonant frequency of the membrane. In some examples, the transmitter can include a non-uniformly shaped membrane capable of vibrating at more than one resonant frequency. The ultrasonic transmitters can be included within a housing configured to control the flow of air within and out of the housing. The transmitter membrane can further be formed on a patterned substrate configured to increase the sound pressure levels produced by the transmitter.