摘要:
Systems and methods for improving memory cell sensing margins by utilizing an optimal reference stimulus. A stimulus component applies a plurality of different reference stimuli to a plurality of memory cells of a memory device. A sense component senses a characteristic of each memory cell of the plurality of memory cells as a function of the serially applied plurality of different reference stimuli. An analysis component computes an optimal reference stimulus by selecting one of the plurality of different reference stimuli, the one of the plurality of different reference stimuli associated with an absolute minima of number of memory cell characteristics that changed state as a function of the applied plurality of different reference stimuli.
摘要:
Systems and methods for improving memory cell sensing margins by utilizing an optimal reference stimulus. A stimulus component applies a plurality of different reference stimuli to a plurality of memory cells of a memory device. A sense component senses a characteristic of each memory cell of the plurality of memory cells as a function of the serially applied plurality of different reference stimuli. An analysis component computes an optimal reference stimulus by selecting one of the plurality of different reference stimuli, the one of the plurality of different reference stimuli associated with an absolute minima of number of memory cell characteristics that changed state as a function of the applied plurality of different reference stimuli
摘要:
Providing distinction between overlapping state distributions of one or more multi cell memory devices is described herein. By way of example, a system can include a calculation component that can perform a mathematical operation on an identified, non-overlapped bit distribution and an overlapped bit distribution associated with the memory cell. Such mathematical operation can produce a resulting distribution that can facilitate identification by an analysis component of at least one overlapped bit distribution associated with cells of the one or more multi cell memory devices. Consequently, read errors associated with overlapped bits of a memory cell device can be mitigated.
摘要:
Systems and methods for improving the programming of memory devices. A pulse component applies different programming pulses to a memory cell. An analysis component measures values of one or more characteristics of the memory cell as a function of the applied different programming pulses. A computation component computes the applied different programming pulses as a function of the measured values of the one or more characteristics of the memory cell. The analysis component measures one or more values of the one or more characteristics of the memory cell, the computation component computes one or more programming pulses as a function of the one or more measured values of the one or more characteristics of the memory cell, and the pulse component applies the one or more programming pulses to the memory cell.
摘要:
An apparatus comprising a two or three dimensional array of a plurality of pairs of non-volatile memory (“NVM”) cells coupled to enable program and erase of the NVM cells. The plurality of pairs of NVM cells is electrically connected to word lines and bit lines. Each pair of NVM cells comprises a first memory cell and a second memory cell. The first and second memory cells comprise a first source/drain, a second source/drain, and a control gate. The first source/drain of the first memory cell is connected to one of the bit lines. The second source/drain of the first memory cell is connected to the first source/drain of the second memory cell. The second source/drain of the second memory cell is connected to another one of the bit lines. The control gates of the first and second memory cells are connected to different word lines.
摘要:
The programming method of the present invention minimizes program disturb by initially programming cells on the same wordline with the logical state having the highest threshold voltage. The remaining cells on the wordline are programmed to their respective logical states in order of decreasing threshold voltage levels.
摘要:
NAND architecture Flash memory strings, memory arrays, and memory devices are described that utilize depletion mode floating gate memory cells. Depletion mode floating gate memory cells allow for increased cell current through lower channel rdS resistance and decreased “narrow width” effect, allowing for increased scaling of NAND memory cell strings. In addition, the required voltages for reading and programming operations are reduced, allowing the use of more efficient, lower voltage charge pumps and a reduction circuit element feature sizes and layouts. Cell inhibit of unselected cells is also increased, reducing the likelihood of cell disturb in the memory array. Operation speed is improved by increasing read current of the selected NAND string and by increasing the ability to overcome the RC time constants of circuit lines and capacitances through lowered voltage swings and increased current supplies.
摘要:
An improved start-up circuit and method for self-bias circuits is described that applies a start-up voltage and current to a self-bias circuit to initialize its operation in its desired stable state. Once the self-bias circuit converges to its desired state of operation a start-up voltage reference/voltage clamping circuit shuts off current flow to the self-bias circuit and the start-up circuit enters a low power mode of operation to reduce its overall current and power draw. This allows for embodiments of the present invention to be utilized in portable and/or low power devices where low power consumption is of increased importance. In one embodiment of the present invention, a band-gap voltage reference circuit is initiated utilizing a start-up circuit.
摘要:
A method and apparatus for sensing the resistance state of data in a resistance memory cell by using the voltage coefficient of the cell instead of only its resistance. A voltage potential is applied across the resistance memory cell allowing the voltage coefficient of the cell to be determined and subsequently used to determine the logic state of the cell.
摘要:
A boosted substrate tub/substrate floating gate memory cell programming process is described that applies a voltage to the substrate or substrate “tub” of a NAND Flash memory array to precharge a channel of carriers within the floating gate memory cells prior to applying a high gate programming voltage to the gate of the selected floating gate memory cells and coupling a program or program-inhibit voltage to program the selected floating gate memory cell(s) as desired. The use of a boosted tub programming approach avoids the requirement that the bitline and/or source line circuit design of the NAND Flash array be able to withstand or carry high voltages during programming of a floating gate memory cells and allows reuse of the block erase high voltage circuits connected to the substrate tub. This allows the NAND Flash memory array to be designed with smaller circuit designs and/or smaller circuit feature elements.