Abstract:
The present application generally relates to the introduction of a renewable fuel oil as a feedstock into refinery systems or field upgrading equipment. For example, the present application is directed to methods of introducing a liquid thermally produced from biomass into a petroleum conversion unit; for example, a refinery fluid catalytic cracker (FCC), a coker, a field upgrader system, a hydrocracker, and/or hydrotreating unit; for co-processing with petroleum fractions, petroleum fraction reactants, and/or petroleum fraction feedstocks and the products, e.g., fuels, and uses and value of the products resulting therefrom.
Abstract:
The present application generally relates to a system to prepare a fuel from a biomass and a petroleum fraction wherein a renewable fuel oil is obtained via pyrolysis, delivered to the injection point of a refinery system, and then co-processed with a petroleum fraction in the presence of a catalyst.
Abstract:
The present application generally relates to a fluidized catalytic cracking apparatus having one or more ports for injecting a renewable fuel oil for co-processing the renewable fuel oil and a petroleum fraction.
Abstract:
The present application generally relates to the introduction of a reduced volatility renewable fuel oil as a feedstock and processing it with a petroleum stream in the presence of a catalyst to reduce the generation of waste streams in refinery systems or field upgrading equipment.
Abstract:
Methods and systems for the devolatilization of thermally produced liquids to raise the flash point are disclosed. Various methods and apparatus can be used to effectively reduce the volatile components, such as wiped film evaporator, falling film evaporator, flash column, packed column, devolatilization vessel or tank.
Abstract:
The present invention aims to provide an integrated process for the pre-treatment of biomass and its use as a feedstock in a process for the production of biochemicals and biofuels, said integrated process preferably allowing the obtaining of quality bio-oil from a biomass such as wood, forest residues, and residues from the sugar-alcohol and energy cane industry.
Abstract:
The present application generally relates to catalytically preparing liquid fuel products with an improved product mix by co-processing a plurality of reactants in in refinery or field-upgrading operations. The reactants may include, for example, petroleum fraction and a biocrude oil having an alcohol additive.
Abstract:
Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reactor, a reheater for forming a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater. The inorganic particle cooler comprises a shell portion and a tube portion. The inorganic particle cooler is configured such that the shell portion receives a portion of the heated inorganic particles and the tube portion receives a cooling medium for indirect heat exchange with the portion of the heated inorganic particles to form partially-cooled heated inorganic particles.
Abstract:
Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reactor, a reheater for forming a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater. The inorganic particle cooler comprises a shell portion and a tube portion. The inorganic particle cooler is configured such that the shell portion receives a portion of the heated inorganic particles and the tube portion receives a cooling medium for indirect heat exchange with the portion of the heated inorganic particles to form partially-cooled heated inorganic particles.
Abstract:
The present disclosure generally relates to the introduction of a liquid biomass in heating systems such as commercial boilers in order to reduce dependence on petroleum-based heating fuel oils as a source of combustion fuel. More specifically, the present disclosure is directed to systems, methods, and apparatuses utilizing a liquid thermally produced from biomass into commercial and industrial boiler or thermal systems such as boilers, furnaces, and kilns, and methods for generating renewable identification numbers (RINs), alternative energy credits (AECs) and renewable energy credits (RECs).