Abstract:
A system and method for processing video data having a first random access point (RAP) picture. An access unit having a first random access point (RAP) picture is received in a video bitstream. A subsequent access unit having a RAP picture that does not initialize the hypothetical reference decoder (HRD) is also received and, based on one or more random access skipped leading (RASL) pictures for the subsequent access unit not being present in the video bitstream, a picture buffer removal time for a picture buffer is shifted earlier based on a picture buffer removal delay offset.
Abstract:
An example method of decoding video data includes receiving, in a message associated with a picture, information indicating a refreshed region of the picture, determining whether the picture comprises a last picture in a gradual decoder refresh (GDR) set, determining whether the picture comprises a recovery point picture, and responsive to determining that the picture comprises the last picture in the GDR set and the recovery point picture, determining that the message indicates that the entire picture belongs to the refreshed region of the picture.
Abstract:
A device decodes, from a scalable nesting supplemental enhancement information (SEI) message in an encoded video bitstream, a plurality of syntax elements that identify a plurality of operation points to which a nested SEI message encapsulated by the scalable nesting SEI message applies. Furthermore, the device uses one or more syntax elements of the nested SEI message to perform an operation regarding any of the operation points to which the nested SEI message applies.
Abstract:
Techniques for low-delay buffering in a video coding process are disclosed. Video decoding techniques may include receiving a first decoded picture buffer (DPB) output delay and a second DPB output delay for a decoded picture, determining, for the decoded picture, a first DPB output time using the first DPB output delay in the case a hypothetical reference decoder (HRD) setting for a video decoder indicates operation at a picture level, and determining, for the decoded picture, a second DPB output time using the second DPB output delay in the case that the HRD setting for the video decoder indicates operation at a sub-picture level.
Abstract:
In an example, the disclosure provides for receiving a coded video sequence comprising encoded pictures of a video sequence and receiving timing parameters for the coded video sequence that include an indication of whether a picture order count (POC) value for each picture in the coded video sequence that is not a first picture in the coded video sequence according to a decoding order is proportional to an output time of the picture relative to an output time of the first picture in the coded video sequence in a video parameter set (VPS) syntax structure referenced by the coded video sequence. Another example provides for encoding pictures of a video sequence to generate the coded video sequence comprising the encoded pictures and signaling timing parameters for the coded video sequence by signaling the indication in the VPS syntax structure referenced by the coded video sequence.
Abstract:
In an example, the disclosure provides for encoding pictures of a video sequence to generate a coded video sequence comprising the encoded pictures and signaling timing parameters for the coded video sequence by directly signaling a condition for signaling a number of clock ticks corresponding to a difference of picture order count (POC) values equal to 1 in at least one of a video parameter set (VPS) syntax structure referenced by the coded video sequence and a sequence parameter set (SPS) syntax structure referenced by the coded video sequence. Another example provides for receiving timing parameters for a coded video sequence that include a condition for signaling a number of clock ticks corresponding to a difference of POC values equal to 1 directly in at least one of a VPS syntax structure referenced by the coded video sequence and an SPS syntax structure referenced by the coded video sequence.
Abstract:
Techniques are described related to modifying an initial reference picture list. The example techniques may identify a reference picture in at least one of the reference picture subsets used to construct the initial reference picture. The example techniques may list the identified reference picture in a current entry of the initial reference picture list to construct a modified reference picture list.
Abstract:
A device for video encoding multi-layer video data includes a memory configured to store at least a portion of a multi-layer bitstream of video data and one or more processors configured to: encode a first access unit comprising at least a layer and a reference layer of the layer; determine if the first access unit is a recovery point; in response to the first access unit being a recovery point, include in the first access unit, a recovery point SEI message that applies to at least the layer and the reference layer; and generate the first access unit with the SEI message.
Abstract:
A device for processing video data includes a memory configured to store at least a portion of a bitstream of multi-layer video data and one or more processors configured to generate a first video coding layer (VCL) network abstraction layer (NAL) unit for a first picture of an access unit, the first VCL NAL unit comprising a first slice type; generate a second VCL NAL unit for a second picture of the access unit, the second VCL NAL unit comprising a second slice type; and generate an access unit delimiter (AUD) NAL unit based on the first and second slice types.
Abstract:
Systems, methods, and devices for processing video data are disclosed. Some examples systems, methods, and devices receive an external indication at a video decoder. The example systems, methods, and devices treat a clean random access (CRA) picture as a broken link access (BLA) picture based on the external indication.