Abstract:
A detector sensor system for sensing the presence of a toxic gas, such as carbon monoxide and/or smoke whereby a corresponding alarm is sounded. The presence of the gas is detected by passing light through a biomimetic sensing material in which the optical characteristics change in the presence of the target gas. This system includes a housing containing a light emitter, light detector and a mechanism for sounding an alarm. The sensing material is contained in a cell which, together with a battery to power the system, is mounted in a key insertable into the housing. The key may be readily inserted or withdrawn from the housing for replacement purposes. When fully inserted, the key positions the sensing cell means between the light emitter and detector means and brings the battery contacts carried therewith into connection with contacts associated with the system circuitry mounted within the housing.
Abstract:
An inexpensive smoke detector having excellent general versatility and reliability allows for an increase in a range of selecting light emitting devices used for such smoke detectors and allows for reductions in the number of processes and adjustment equipment, thereby reducing costs and avoiding human adjustment errors. The smoke detector includes an A/D conversion circuit for measuring an output from a photo transistor which receives a light output of at least a light emitting diode used for smoke detection. A MPU generates a signal for driving the light emitting diode, based on a value measured by the A/D conversion circuit. The smoke detector also includes an EEPROM. A D/A conversion circuit adjusts a light emission quantity of the light emitting diode based on a value read from the EEPROM. The smoke detector further includes a voltage/current conversion circuit.
Abstract:
Outputs from a smoke detector and non-fire sensors such as temperature and humidity can be combined to produce a delay in a signal from the smoke sensor indicative of a potential fire condition. The signals can be combined locally and all of the sensors can be carried in a single housing. Alternately, the sensors can be carried in separate housings and combined at a remote control panel. The value output from the humidity and temperature sensor can be used in determining whether or not to produce a delay. Alternately, the rate of change of either or both parameters can be used to determine whether a delay is necessary.
Abstract:
An apparatus for detecting fire including a light source for generating light, a light sensor for receiving light from the light source and providing an analog signal representing the intensity of the received light, and a clear plastic light guide for transmitting the light from the light source to the sensor. The light guide include notches for allowing smoke to enter the notches. Smoke entering the notches decreases the intensity of the light passing therethrough. A calibration sensor is included. The sensitivity of the fire detector is increased by a lens assembly which collimates the light generated by the light source. The color of smoke entering the light guide may be determined by generating colored light. Temperature, humidity and carbon monoxide levels are also detected and the information is integrated with the smoke detection data to provide a reliable fire detector.
Abstract:
A non-intrusive optical transmission liquid monitoring system that detects bubbles in a transparent liquid flowing through a transparent tubing. The system dynamically compensates for changes in optical transmission efficiency of the monitored liquid and distinguishes between the transition from liquid to air and air to liquid. A system comprising a light transmitter and a light sensitive receiver secured on opposite sides of a transparent tubing. The output of the receiver is fed into a self-referencing and drift compensation circuit. The integrated output is connected to circuitry sensitive to a change in the integrated output and triggers one of two possible alarms to indicate a detected transition from liquid to air, or air to liquid.
Abstract:
A smoke type fire detector accurately detects a smoke density even when an internal temperature thereof changes. An internal temperature detecting unit detects an ambient temperature at a light emitting element and a light receiving element. A correction coefficient having a value associated with the ambient temperature detected by the temperature detecting unit is used to correct an output level of the light receiving element.
Abstract:
A photoelectric type fire detector has: a detector body; a printed circuit board disposed on the upper side of the detector body; conductive connecting members provided on the lower side of the detector body; terminal screws for simultaneously fixing the printed circuit board and the conductive connecting members to the detector body; an optic base directly placed on the upper side of the printed circuit board and having a labyrinth formed on the upper side thereof; hooks for fixing the optic base to the upper side of the printed circuit board; a light-emitting element and a light-receiving element arranged in a pair for detecting smoke; a bug screen provided on the outer periphery of the labyrinth of the optic base; an optic base cover covering the upper side of the optic base; and a protective cover covering the printed circuit board, the optic base, the bug screen and the optic base cover. The protective cover has a plurality of smoke inlet windows and is provided with hooks on the lower end thereof, the hooks engaging the detector body to fix the protective cover to the upper side of the detector body. The invention is also applicable to a heat-photoelectric type fire detector in which a heat sensing element connected to the printed circuit board is combined with the photoelectric fire detecting function. The heat sensing element is securely fixed by a protective cover of the device.
Abstract:
An optical alignment system includes a transmitter of a beam of radiant energy and receiver thereof. Both the transmitter and receiver carry a plurality of light emitting diodes. As the optical alignment between the transmitter and the receiver is altered, the number of diodes which is energized is increased or decreased in response to increasing or decreasing the optical coupling therebetween.
Abstract:
Method and apparatus for sampling the gaseous medium of a zone or area to determine the concentration, or changes in concentration, of submicron particles suspended in the gaseous medium of that area or zone using an elongated cloud chamber. A light source and a phototransistor are disposed in the cloud chamber and spaced apart so as to be electronically responsive to varying levels of light. A microprocessor is connected to a programmable memory EPROM and has pre-programmed data instructions on particle concentration levels. The EPROM sequences the microprocessor to operate the valves that sequentially sample the gaseous medium in the cloud chamber, and opens the exhaust valve in the cloud chamber to create a condition of reduced gas pressure therein. The sample of gaseous medium containing submicron particles then precipitates or condenses a portion of the cloud in the chamber in proportion to the concentration of the particles. The phototransistor measures the change in light intensity due to the concentration of the particles. A data storage device records each of the particle concentration levels sensed and measured in the zone so dangerous levels of gas concentrations can be detected in the area or zone being treated.
Abstract:
An extinct type detector which detects and determines a concentration or density of a gas or vapor in a space on the basis of an attenuation of light due to the gas or vapor present within the space.The detector of this feature of the invention operates in such a way that the light emitting device is periodically driven to effect light emission, the first and the second photodetector devices receive the light from said light emitting device, the first and second storage means corresponding to the first and the second photodetector devices, respectively, cumulatively store the outputs from the respective photodetector devices, a difference in cumulative storage values between the first and the second storage means is detected to determine a concentration and density of the gas or vapor within the detecting space based on the detected difference.