摘要:
A coating suitable for use as a wear-resistant coating for a gas turbine engine component comprises titanium chrome carbonitride and nickel cobalt.
摘要:
A method of forming a wear-resistant coating on a metal substrate includes depositing a metal alloy onto the metal substrate to form a cladding, rough finishing the cladding to thereby provide the cladding with an average roughness, Ra, of from about 50 micro-inches to about 150 micro-inches, and work hardening the cladding to thereby form the wear-resistant coating and a hardened zone thereof, wherein the hardened zone has a hardness greater than a hardness of the metal substrate. A wear-resistant coating system includes the metal substrate and the wear-resistant coating disposed on the metal substrate. The wear-resistant coating is substantially resistant to corrosion from sea water at an ambient temperature of from about −40° C. to about 50° C.
摘要:
The invention relates to a coated article which has (i) at least one electrically non-conducting base layer, (ii) at least one layer of copper and/or a copper alloy, and (iii) a layer which contains at least one electrically conductive polymer, wherein the copper or copper alloy layer (ii) is positioned between the base layer (i) and the layer containing the conductive polymer (iii), and which is characterized in that the layer (iii) contains at least one precious metal or at least one semiprecious metal or a mixture thereof. The invention also relates to a process for its production and also its use for the prevention of corrosion and to preserve the solderability of printed circuit boards.
摘要:
A wear element for component subject to abrasive influences, for example in a region of a receiving element for bulk material, includes an element formed by a one-piece, approximately plate-shape molded body made of a wear resistant alloy. The molded body is configured not to be planar in any plane. The molded body has an approximately rectangular cross-section and includes longitudinal sides and lateral sides that are rounded sections flowing into each other.
摘要:
Embodiments of the invention provide a method for depositing materials on substrates. In one embodiment, the method includes depositing a barrier layer containing tantalum or titanium on a substrate, depositing a ruthenium layer or a cobalt layer on the barrier layer, and depositing a tungsten bulk layer thereover. In some examples, the barrier layer may contain tantalum nitride deposited by an atomic layer deposition (ALD) process, the tungsten bulk layer may be deposited by a chemical vapor deposition (CVD) process, and the ruthenium or cobalt layer may be deposited by an ALD process. The ruthenium or cobalt layer may be exposed to a soak compound, such as hydrogen, diborane, silane, or disilane, during a soak process prior to depositing the tungsten bulk layer. In some examples, a tungsten nucleation layer may be deposited on the ruthenium or cobalt layer, such as by ALD, prior to depositing the tungsten bulk layer.
摘要:
An article, process, and method for surface plasmon resonance plates are described. A substrate is covered with a thin metal film onto which a second thin metal film is deposited. The surface of the second thin metal film is converted to the metal oxide which is used to covalently bond organosilanes to the surface. Reactive organosilanes containing terminal bonding groups are arranged in a plurality of spots that are surrounded by inert organosilanes. Biomolecule attachment to the binding group is detected or measured from surface plasmon signals from the first thin metal film.
摘要:
A method for reaction control coating includes: (a) a step of applying a reaction control material to a surface of an Ni-base superalloy before applying aluminum diffusion coating to the Ni-base superalloy, wherein the reaction control material is Co, Cr or Ru, or an alloy of which main component is selected from the group consisting of Co, Cr, and Ru; and (b) a step of applying the aluminum diffusion coating to the Ni-base superalloy.
摘要:
Disclosed is a hardfacing alloy capable of withstanding service abrasion of the order of silicious earth particles and weldable on industrial products, such as tool joints and stabilizers used in oil and gas well drilling, and other industrial products. The hardfacing alloy has a low coefficient of friction resulting from excellent metal to metal resistance and significant reduction in industrial wear on industrial products, such as casing wear. Other embodiments of the invention include tool joints having the hardbanding alloy welded to the outer cylindrical surface to its box and pin members and to stabilizer ribs on the stabilizer used in earth boring, such as boring for oil and gas, other industrial products, and methods of applying the hardfacing alloy to their surfaces. The hardfacing alloy does not require any post weld treatment, has primary borides in its microstructure, the carbons in the alloy are tied up in the formation of secondary carbides which add to the abrasion resistance, and have a quadratic crystallographic structure and a hardness of about 1725 Hv comparable to the prior art hardness of the chromium carbide primary carbide alloys of the prior art but is substantially less brittle than C—Cr—Fe hardfacing alloys.
摘要:
A process for repairing a turbine component of a turbomachine, as well as a sintered preform used in the process and a high-gamma-prime nickel-base superalloy component repaired thereby. The sintered preform contains a sintered mixture of powders of a cobalt-base braze alloy and a cobalt-base wear-resistant alloy. The braze alloy constitutes at least about 10 up to about 35 weight percent of the sintered preform and contains a melting point depressant such as boron. The preform is formed by mixing powders of the braze and wear-resistant alloys to form a powder mixture, and then sintering the powder mixture. To use the preform, a surface portion of the turbine component is removed to expose a subsurface portion, followed by diffusion bonding of the preform to the subsurface portion to form a wear-resistant repair material containing the braze alloy dispersed in a matrix of the wear-resistant alloy.