Abstract:
An apparatus is described that includes an image sensor having a first output port and a second output port. The first output port is to transmit a first image stream concurrently with a second image stream transmitted from the second output port.
Abstract:
An image pickup device includes on a silicon layer: a photodiode provided on each pixel basis to perform photoelectric conversion to generate a charge depending on the light receiving amount; a floating diffusion section configured to store the charge generated by the photodiode; and a transistor configured to output a pixel signal at a voltage in accordance with a level of the charge stored in the floating diffusion section, wherein the image pickup device further includes a hermetically-sealed cavity section inside the silicon layer and on at least one of the underside of the floating diffusion section and the underside of a channel body region of the transistor.
Abstract:
Provided is an imaging device that includes a pixel unit in which each of a plurality of pixels includes m photoelectric conversion units and each of at least a part of the plurality of pixels outputs a first signal based on signal charges of n photoelectric conversion unit or units, where n is less than m; an adder unit configured to add a plurality of first signals output from a plurality of pixels different from each other; a determination unit configured to compare each of the plurality of first signals and a predetermined threshold to determine whether or not the plurality of first signals added by the adder unit include a signal larger than a predetermined threshold; and an output unit configured to output a determination result and the added signal.
Abstract:
Imaging systems are provided for high speed, high resolution imaging of biochemical materials. In an example embodiment, an imaging system comprises an objective lens component, a line generator, a digital camera, a positioning stage, and a scan mirror. The line generator generates a line of light that is scanned across a portion of a substrate that is mounted on the positioning stage. The positioning stage moves the substrate in a particular direction that is substantially normal to an optical axis of the objective lens component. The camera collects an image of the portion of the substrate through the objective lens component. The scan mirror moves in coordination with the positioning stage, while the line of light is being scanned across the portion of the substrate and the substrate is being moved in the particular direction, in order to keep the image still with respect to the camera while the image is being collected by the camera.
Abstract:
An optical electronic device may include a plurality of different optical sources, and a global shutter sensor including an array of global shutter pixels, with each global shutter pixel including a plurality of storage elements. A controller may be coupled to the plurality of optical sources and the global shutter sensor and configured to cause a first optical source to illuminate and a first storage element in each global shutter pixel to store optical data during a first integration period, cause a second optical source to illuminate and a second storage element in each global shutter pixel to store optical data during a second integration period, and output the stored optical data from the first and second storage elements of the global shutter pixels after the first and second integration periods.
Abstract:
A CMOS image sensor having two ASPs can reduce increasing design difficulty as arising from a pixel array becoming larger and larger. The image sensor includes a selection circuit for transmitting outputs of CDS circuits through four divided buses to reduce parasitic loading and achieve high-speed operation. Then, the selecting circuit transmits red and blue pixels to a first ASP, and transmits green pixels to a second ASP, so as to relax the specification requirements of the ASP.
Abstract:
An image-capturing device includes a solid-state image-capturing device in which a first substrate and a second substrate are electrically connected through connection units. The image-capturing device includes: a pixel unit in which a plurality of pixels, each of which has a photoelectric conversion element for generating a photoelectric conversion signal according to an intensity of incident light disposed on the first substrate, are disposed in a two-dimensional matrix and configured to output a photoelectric conversion signal generated by each of the pixels as a pixel signal for every row; a plurality of signal processing units, each of which is disposed for every one or more columns of the plurality of pixels provided in the pixel unit, performs predetermined signal processing on the pixel signal output from the pixel of a corresponding column, and outputs a processed signal including a plurality of signals after the signal processing is performed.
Abstract:
An image pickup apparatus for photographing an image, includes: a photoelectric converter to convert incident light an electric charge and accumulate the electric charge, a transfer element to transfer the electric charge accumulated in the photoelectric converter, a converter to convert the electric charge in the photoelectric converter transferred via the transfer element into a voltage, a reset element to reset potentials of the converter, and an amplifier to amplify a voltage converted by the converter to generate a pixel signal and output the pixel signal to a read signal line for reading the pixel signal. A plurality of the photoelectric converter and the transfer element are disposed at least in a horizontal direction share the amplifier and the read signal line.
Abstract:
A CMOS image sensor includes an active pixel array suitable for generating an active pixel signal, a dummy pixel array suitable for generating a dummy pixel signal, a row driver suitable for controlling the active pixel array and the dummy pixel array to simultaneously operate at a same column, and a correlated double sampling (CDS) array suitable for generating an active sampling signal and a dummy sampling signal, which are sampled from the active pixel signal and the dummy pixel signal by using a correlated double sampling, respectively, based on a first ramp signal and a second ramp signal, and comparing the active sampling signal with the dummy sampling signal.
Abstract:
An imaging device includes a readout unit which reads out an amount of charge accumulated in a floating diffusion that accumulates a charge transmitted from a light receiving unit that photoelectrically converts incident light as a signal level; a readout control unit which controls the readout unit to perform, a plurality of times, a readout operation to read out the amount of charge of a P-phase and a D-phase accumulated in the floating diffusion; and a calculation unit which is controlled by the readout control unit and obtains differences between the signal levels which are obtained using the readout operation that is performed a plurality of times.