Abstract:
An optical conduction unit (U) has a configuration in which one portion (Sb) and another portion (58a) of an optical conduction body (5) are mated in mutually orthogonal x, y directions with first and second fitting means (64), (64a) of the first member (60A) of a reflector (6). A portion (65b) and another portion (65c) of the second member (60B) of the reflector (6) are mated in the x, y directions with the third and fourth fitting means (64b), (64c) of the first member (60A). With such a configuration, the reflector (6) and optical conduction body (5) can be reliably assembled so that they cannot be easily separated.
Abstract:
A line-illuminating device is provided in an image-scanning device such that the end of a transparent light guide is not disengaged from a casing and uniformity of the light amount can be achieved. A rib is formed unitarily with a resin mold which constructs a light source unit so as to cover an end of a light-emitting plane of the transparent light guide. The end of the light guide can be prevented from being disengaged from the casing by the rib. Another rib is formed unitarily with the end of the casing on the opposite side of the light source unit. This rib covers an opposite end of the light-emitting plane of the transparent light guide, and prevents the opposite end of the light guide from being disengaged from the casing.
Abstract:
An image reading apparatus capable of switching between and reading a reflective original and a transparent original is adapted to consume less power and is reduced in size. The evolution of heat by a light source can be suppressed and power consumption reduced by using a solid-state light source such as an LED as light sources for illuminating both reflective and transparent originals. In addition, owing to use of LEDs and sharing of a timing drive circuit, the apparatus per se can be reduced in size.
Abstract:
There is disclosed an illumination device in which a light guide is adapted to emil the light from a face thereof and is provided with an area, on a face opposite to the light emitting face, for diffusing and/or reflecting the light introduced into the light guide from an end face thereof or is provided with uneven light emitting characteristics along the longitudinal direction of the light guide, and the center of the light source positioned at the end of the light guide is placed at a position aberrated from the normal line to said area, whereby attained are compactnces, a low cost, a low eleotric power consumption, a high efficiency of utilization of the light emitted by the light source, and excellent and uniform illumination characteristics. There are also disclosed an image reading device and an information processing apparatus, equipped with the above-mentioned illumination device.
Abstract:
Inputs and outputs to/from the outside can be performed together by a single connecting medium. The connecting medium includes connecting terminals for connecting to a plurality of input/output terminals of a second board and connecting terminals for connecting to a lead frame package as part of a light source.
Abstract:
An image reading apparatus includes a light source, an elongate light guide member for guiding light emitted from the light source toward an image read line, and a plurality of light receiving elements for receiving light reflected at the image read line. The light guide member includes a first portion, a second portion, and a connecting portion for connecting the first portion and the second portion. The first portion includes a light incidence surface facing the light source for entry of light emitted from the light source, and the light incidence surface is convexly curved widthwise of the light guide member. The second portion includes a light exit surface oriented toward the image read line for emitting light toward the image read line. The connecting portion is narrower than the first portion and the second portion.
Abstract:
In an image forming apparatus, an object surface (14) is disposed facing one end face of a rod lens array (10), while an image surface (16) is disposed facing the other end face thereof. A lens working distance of the rod lens array on the object side is substantially equal to that on the image side. An actual object-image distance Tco is set between the conjugate length TC1 at which the average value MTFave of the MTF of the rod lens array in the lens array direction is maximized and the conjugate length TC2 at which the nullMTF(null(MTFmaxnullMTFmin)/MTFave) is minimized, and a shift quantity nullTC(nullnullTConullTC1null) is set within 0 mm
Abstract:
There is disclosed an image reading apparatus having a plurality of illuminating packages and an optical guide member for guiding lights from the plurality of illuminating packages and reflecting in the direction of an object, thereby irradiating the object in a line shape, wherein three or more illuminating packages are arranged at positions in the optical guide member which are symmetrical for a reflecting portion of the optical guide member and an image can be read at a high picture quality.
Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
A contact-type image sensor (20) comprises a case (21), a glass cover (22) provided on an upper surface of the case (21), a bottom substrate (23) mounted in a bottom surface of the case (21), light receiving elements (24) mounted on the bottom substrate, light emitting elements (25) for irradiating an object (D) on the glass cover (22) with light, and a rod lens array (27) for collecting the light reflected by the object (D) on the glass cover (22) onto the light receiving elements (24). The light emitting elements (25) are mounted on the bottom substrate (23). The contact-type image sensor further comprises a light guide (26) provided in the case (21) for efficiently directing the light from the light emitting elements (25) to a predetermined region (L) of the glass cover (22).