Abstract:
A mounting bracket for an image sensing unit of a scanner according to one example embodiment includes a first portion and a second portion extending from the first portion. The first portion has a plurality of elongated holes therein each for receiving a fastener to mount the mounting bracket to a scan head frame. The second portion includes a cutout section therein for allowing an image sensor of the image sensing unit to receive an image from an optical unit of the scanner. A pivot hole in the first portion is centered about a width of the cutout section. When the mounting bracket is mounted on the scan head frame, the elongated holes in the first portion permit linear adjustment of the mounting bracket relative to the scan head frame and the pivot hole permits angular adjustment of the mounting bracket relative to the scan head frame.
Abstract:
An image reading apparatus includes a drive unit that is mounted on a carriage having an image reading sensor, which is moved with respect to an original, mounted thereon and moves the carriage. The drive unit includes: a motor; a gear train for transmitting rotation of the motor so as to move the carriage; an encoder sensor for reading a code wheel fixed to a rotary shaft of the motor; and a support member for holding the motor. The encoder sensor is urged against a part of the support member by a resilient member, to be thus fixed to the support member.
Abstract:
A solid-state image pickup device comprising: a multilayer wiring board 2 having an opening portion 21; a spacer 3 covered with a conductive film 32, and fixed to the multilayer wiring board 2 in a state of making the conductive film 32 face contact with a reference potential electrode exposed into the opening portion 21 of the multilayer wiring board 2; a solid-state image pickup element 4 fixed to the spacer 3 in a state of face contact with the conductive film 32 of the spacer 3, and arranged in the opening portion 21; and an optical element 5 fixed at a position opposing the solid-state image pickup element 4 via the spacer 3, and transmitting light into the opening portion.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
A technique is provided which can improve optical characteristics by suppressing the occurrence of an error in attachment of a rotary deflector that deflects a light flux from a light source and scans it in a main scanning direction. There are provided a rotary deflector that deflects the light flux from the light source and scans it in the main scanning direction, an imaging optical system that images the light flux scanned by the rotary deflector onto a specified scanning object, a support part that supports the rotary deflector rotatably, and a positioning part that comes in contact with the support part at plural contact positions and positions the support part, in which a shortest distance between the plural contact positions in an optical axis direction of the imaging optical system is longer than a shortest distance between the plural contact positions in the main scanning direction.
Abstract:
An optical system, used for scanning, forms an image using reflective optical surfaces. The system may be telecentric, and may form an image that is reduced in size as compared with the scanned original. Several image-forming optical channels may be combined to form a page-wide scanning array.
Abstract:
A CCD and CMOS image pickup module including a circuit main board on which an image sensor (CMOS, CCD) and relevant electronic elements are laid. A lens seat is disposed on an upper edge of a package of the image sensor. The lens seat has an image pickup cylinder correspondingly positioned above a coupling transistor of the image sensor. The lens seat covers and encloses the image sensor with the connecting section of the bottom of the image pickup cylinder sealedly attaching to the periphery of the top face of the package of the image sensor. With the profile of the outer periphery of the package of the image sensor serving as a normal standard for the axis of the lens, the axis of the lens being projected onto the sensor center of the coupling transistor.
Abstract:
A transparency adapter for a flat bed scanner of the type commonly used as a stand-alone computer peripheral, including a source of light, either white light such as fluorescent, or a series of red, green and blue light emitting diodes placed in a generally rectangular housing having a length corresponding to the width of the glass platen of a flat bed scanner, and including magnets at either longitudinal end of the transparency adapter, further including magnets positioned on the carriage inside of the flat bed scanner housing, whereby the magnets of the carriage are aligned with the magnets of the transparency adapter so that upon advancement of the carriage along the rails inside of the scanner from one end of the scanner to the other, the magnetic force of the attached magnets causes the transparency adapter to advance along the top surface of the glass platen and to move the transparency adapter in alignment with the carriage.