Abstract:
A hybrid power transmission integrated system includes a first planetary gear train, a second planetary gear train, a first transmission-connecting set and a second transmission-connecting set. A control method includes: arranging the first transmission-connecting set to provide a first power input end; arranging the second transmission-connecting set to provide a second power input end, a first power output end and a free transmission end; connecting the first and second transmission-connecting sets to the first and second planetary gear trains; controlling the free transmission end performed as a second power output end or a third power input end such that powers are converted via the second power output end and are stored; supplying the stored power to the hybrid power transmission integrated system via the second or third power input end.
Abstract:
A hybrid electric vehicle includes an engine that can selectively provide drive torque to propel the vehicle. An electric machine also selectively provides drive torque. A differential transfers the torque to and amongst wheels. A planetary gearset is coupled to the engine and has a ring-gear for transmitting ring-gear-torque to the differential. A continuous torque transfer member operatively couples the ring-gear and the electric machine to the differential. At least one controller is configured to alter engine output based on a ring-gear-torque-threshold. This enables a desired torque to transfer through the continuous torque transfer member to the differential.
Abstract:
A power transmission system of a hybrid electric vehicle may include an input shaft, an output gear disposed on the input shaft, a first planetary gear set having a first sun gear, a first planetary carrier, and a first ring gear; a second planetary gear set having a second sun gear, a second planetary carrier, and a second ring gear; a third planetary gear set having a third sun gear, a third planetary carrier, and a third ring gear; first to seventh rotation shafts, and three friction elements configured to selectively connect the respective rotation shafts to each other or selectively connect the respective rotation shafts to the transmission housing.
Abstract:
A method of operating a first motor/generator and a second motor/generator in a vehicle drive includes operating the vehicle drive in a first operating mode and a second operating mode, the first operating mode including operating the first motor/generator as a generator and operating the second motor/generator as a motor, the second operating mode including operating both the first motor/generator as a generator and the second motor/generator as a generator when a first power generation capability associated with the first motor/generator is below a first threshold level, the first motor/generator and the second motor/generator providing electrical power to the DC bus without doing either of (a) providing electrical power to an energy storage device or (b) consuming electrical power from an energy storage device.
Abstract:
A vehicle drive apparatus includes: an engine; a rotary machine; an output member coupled to a drive wheel of a vehicle; a differential mechanism configured to couple the engine, the rotary machine, and the output member together to be differentially rotatable via a plurality of differentially rotatable rotational elements; and an elastic member configured to couple a rotation shaft of the rotary machine to the rotational element of the differential mechanism to be relatively rotatable.
Abstract:
A power train and related vehicle are described for continuously variable transmission of power. A gear set includes first and second input components and an output component. An engine provides mechanical power to the first input component and, when a clutch device is in a first state, to a first continuously variable power source (“CVP”). With the clutch device in a second state, the first CVP is decoupled from the engine. A second CVP receives non-mechanical power from the first CVP, and converts the non-mechanical power to mechanical power. When a brake device is not engaged, the second CVP provides the resulting mechanical power to the second input component. When the brake device is engaged, the brake device prevents the second input component from rotating.
Abstract:
One embodiment provides a method of operating a first motor/generator and a second motor/generator in a vehicle drive. The first motor/generator is electrically coupled to the second motor/generator by a DC bus. The vehicle drive is configured to propel a vehicle. The method includes operating the first motor/generator as a generator, providing electrical power to the DC bus. The first motor/generator provides the electrical power required by the second motor/generator and the electrical power required to offset losses. The method also includes operating the second motor/generator as a motor, consuming electrical power from the DC bus. The sum of the electrical power provided, the electrical power losses, and the electrical power consumed is zero. The first motor/generator provides electrical power and the second motor/generator consumes electrical power without providing electrical power to an energy storage device or consuming electrical power from an energy storage device.
Abstract:
One embodiment provides a vehicle drive. The vehicle drive includes a first gear set and a second gear set. Each gear set includes a sun gear, a ring gear, planetary gears, and a planetary gear carrier. The vehicle drive includes a first motor/generator coupled to the sun gear of the first gear set. The vehicle drive includes a second motor/generator coupled to the planetary gear carrier or the ring gear of the first gear set. The second motor/generator is electrically coupled to the first motor/generator. The motor/generators are electrically coupled without an energy storage device. The vehicle drive includes an engine coupled to the ring gear of the first gear set and selectively coupled to the second motor/generator. The vehicle drive includes a first and a second clutch configured to selectively engage the second motor/generator to the planetary gear carrier of the first gear set or the engine.
Abstract:
An electrically variable transmission includes an input member, first and second motor-generators and a gear reduction arrangement including at least a first gear coupled to at least one second gear. A first planetary gear set can include a first sun gear, a first ring gear and a first carrier rotatably supporting a plurality of pinion gears in meshing engagement with the first sun gear and ring gear. The first carrier can be non-rotatably coupled to the input member and the first ring gear can be non-rotatably coupled to the at least one second gear. The sun gear can be non-rotatably coupled to the first motor-generator and the first gear can be non-rotatably coupled to the second motor-generator. The torque transmitting device can be configured to selectively fix rotation of the input member in at least one of a first rotational direction and a second opposite rotational direction.
Abstract:
An electrically variable drive unit having two electric motors is provided. The first electric motor is mounted along the same axis as an engine. The second electric motor is mounted along the same axis as a transmission output.