Abstract:
The invention provides a nucleotide or nucleoside having a base attached to a detectable label via a cleavable linker, characterised in that the cleavable linker contains a moiety selected from the group comprising: Formula (I) (wherein X is selected from the group comprising O, S, NH and NQ wherein Q is a C1-10 substituted or unsubstituted alkyl group, Y is selected from the group comprising O, S, NH and N(allyl). T is hydrogen or a C1-10 substituted or unsubstituted alkyl group and * indicates where the moiety is connected to the remainder of the nucleotide or nucleoside).
Abstract:
This invention provides a process for making 3′-O-allyl-dGTP-PC-Biodopy-FL-510, 3′-O-allyl-dATP-PC-ROX, 3′-O-allyl-dCTP-PC- and 3′-O-allyl-dUTP-PC-R6G, and related methods.
Abstract:
Embodiments of the invention are to compounds, methods, and compositions for use in the treatment of viral infections. More specifically embodiments of the invention are 2′,4′-substituted nucleoside compounds useful for the treatment of viral infections, such as HIV, HCV, and HBV infections.
Abstract:
Disclosed are β-D-ribofuranosyl-pyrazolo[3,4-d]pyrimidine compounds, compositions and methods for treating viral infections caused by a flaviviridae family virus, such as hepatitis C virus. Representative compounds include those having the general formula.
Abstract:
Novel nucleoside analog compounds are disclosed. The novel compounds or pharmaceutically acceptable esters or salts thereof may be used in pharmaceutical compositions, and such compositions may be used to treat an infection, an infestation, a neoplasm, or an autoimmune disease. The novel compounds may also be used to modulate aspects of the immune system, including modulation of Type 1 and Type 2 activity.
Abstract:
Disclosed are compounds, compositions and methods for treating viral infections caused by a flaviviridae family virus, such as hepatitis C virus. Such compounds are represented by Formula IB as follows: and pharmaceutically acceptable prodrugs and salts thereof, where R, R1, R13, R14, W, W2, W3, Y and Z are as defined herein.
Abstract:
The present invention provides nucleoside compounds and certain derivatives thereof which are inhibitors of RNA-dependent RNA viral polymerase. These compounds are inhibitors of RNA-dependent RNA viral replication and are useful for the treatment of RNA-dependent RNA viral infection. They are particularly useful as inhibitors of hepatitis C virus (HCV) NS5B polymerase, as inhibitors of HCV replication, and/or for the treatment of hepatitis C infection. The invention also describes pharmaceutical compositions containing such nucleoside compounds alone or in combination with other agents active against RNA-dependent RNA viral infection, in particular HCV infection. Also disclosed are methods of inhibiting RNA-dependent RNA polymerase, inhibiting RNA-dependent RNA viral replication, and/or treating RNA-dependent RNA viral infection with the nucleoside compounds of the present invention.
Abstract:
The present invention relates to nucleoside diphosphate mimics and nucleoside triphosphate mimics, which contain diphosphate or triphosphate moiety mimics and optionally sugar-modifications and/or base-modifications. The nucleotide mimics of the present invention, in a form of a pharmaceutically acceptable salt, a pharmaceutically acceptable prodrug, or a pharmaceutical formulation, are useful as antiviral, antimicrobial, and anticancer agents. The present invention provides a method for the treatment of viral infections, microbial infections, and proliferative disorders. The present invention also relates to pharmaceutical compositions comprising the compounds of the present invention optionally in combination with other pharmaceutically active agents.
Abstract:
The invention provides modified nucleotide or nucleoside molecule comprising a purine or pyrimidine base and a ribose or deoxyribose sugar moiety having a removable 3′-OH blocking group covalently attached thereto, such that the 3′ carbon atom has attached a group of the structure —O-Z wherein Z is any of —C(R′)2-O—R″, —C(R′)2-N(R″)2, —C(R′)2-N(H)R″, —C(R′)2-S—R″ and —C(R′)2-F, wherein each R″ is or is part of a removable protecting group; each R′ is independently a hydrogen atom, an alkyl, substituted alkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclic, acyl, cyano, alkoxy, aryloxy, heteroaryloxy or amido group, or a detectable label attached through a linking group; or (R′)2 represents an alkylidene group of formula ═C(R′″)2 wherein each R′″ may be the same or different and is selected from the group comprising hydrogen and halogen atoms and alkyl groups; and wherein said molecule may be reacted to yield an intermediate in which each R″ is exchanged for H or, where Z is —C(R′)2-F, the F is exchanged for OH, SH or NH2, preferably OH, which intermediate dissociates under aqueous conditions to afford a molecule with a free 3′OH; with the proviso that where Z is —C(R′)2-S—R″, both R′ groups are not H.
Abstract:
The present invention provides nucleoside compounds and certain derivatives thereof which are inhibitors of RNA-dependent RNA viral polymerase. These compounds are inhibitors of RNA-dependent RNA viral replication and are useful for the treatment of RNA-dependent RNA viral infection. They are particularly useful as inhibitors of hepatitis C virus (HCV) NS5B polymerase, as inhibitors of HCV replication, and/or for the treatment of hepatitis C infection. The invention also describes pharmaceutical compositions containing such nucleoside compounds alone or in combination with other agents active against RNA-dependent RNA viral infection, in particular HCV infection. Also disclosed are methods of inhibiting RNA-dependent RNA polymerase, inhibiting RNA-dependent RNA viral replication, and/or treating RNA-dependent RNA viral infection with the nucleoside compounds of the present invention.