Abstract:
A method or process is provided for removing selenate from an ion-exchange or an adsorption media regenerant stream. The regenerant stream is processed in a nanofiltration membrane which produces a permeate and a reject stream containing the selenate. A reducing agent, such as iron, is mixed with the reject stream and this gives rise to an oxidation-reduction reaction that reduces the selenate to selenite. Thereafter, the method includes adsorbing the selenate onto an adsorbent, such as hydrous iron oxide. The adsorbent and adsorbed selenite is removed from the reject stream via a solids-liquid separation process.
Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
A system and method for providing mobile or temporary water treatment involving ion exchange resins includes a service centre, one or more treatment vehicles, a resin transfer hub and one or more resin transport vehicles. The service centre can be used to regenerate one or more types of ion exchange resins. The treatment vehicle carries water treatment equipment including a tank holding ion exchange resin. The resin transfer hub facilitates moving resin between a treatment vehicle and a resin transport vehicle. The resin transport vehicle is adapted for carrying resin by one or more of land, sea and air between the resin forwarding centre and the service centre. In operation, a treatment vehicle brings resin requiring regeneration to the resin transfer hub, where it is emptied and then re-filled with regenerated resin. Resin requiring regeneration is transferred to a resin transport vehicle for transport to the service centre. The resin transport vehicle is re-filled there with regenerated resin, which is taken back to the resin transfer hub for transferred to a treatment vehicle.
Abstract:
Device for the removal of ions from a polar liquid, e.g. water, comprising at least one compartment which comprises at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow, in which said compartment an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device being characterized in that it comprises one sensor of at least one dimensional change of the ion-exchange material. The sensor can comprise a photo-sensor or a sensor of mechanical stress. Preferably an apparatus connected to the sensor is able to analyze this dimensional change and to control the electric current. Method of using said device, whereby the electrical current applied to the device is controlled according to the expansion of the resin.
Abstract:
Device (2) for the removal of ions from a polar liquid (F), e.g. water, comprising at least one compartment (14′) which comprises at least one inlet for an entering polar liquid flow and at least one outlet for an outgoing deionized liquid flow (D), in which said compartment (14′) an electrochemically regenerable ion-exchange material fills a zone through which zone a liquid flow is able to pass, the device (2) being characterized in that it comprises one sensor (1) of at least one dimensional change of the ion-exchange material. The sensor can comprise a photo-sensor or a sensor of mechanical stress. Preferably an apparatus (100, 10, 11) connected to the sensor is able to analyze this dimensional change and to control the electric current.Method of using said device (2), whereby the electrical current applied to the device (2) is controlled according to the expansion of the resin.
Abstract:
A frustum filter used for separation of cation and anion exchange resins, which is used in condensate water polishing system or apparatus, wherein said frustum filter comprises a microporous filtering net body (1) which is formed by sintering a mixture of silicon carbide grains and a binder, said net body being provided with a plurality of micropores, the diameter of said micropores being in a range of 50-300 micron, said filtering net body (1) being shaped as an inverted truncated cone and its maximum diameter being in a range of 50-200 cm, the angle between a inner tapered face and a horizontal plane being in a range of 15null-30null and the thickness of said filtering net body being in a range of 2 cm-14 cm. Some reinforcing steel bars which have the property of high temperature resistance are embedded in said filtering net body(1) in advance. A steel ring (6) welded at the housing (2) is fixed on the external circumference of said filtering net body (1). This invention has the following advantages: it can distribute evenly water and has high strength; it can not be blocked easily and will not create dead zones when filtration; the product of the invention has high strength and cannot be deformed easily over the prior art; it also has the properties of strong acid fastness, strong alkali fastness, high temperature resistance, oxidation resistance.
Abstract:
A method for desalination of water or of aqueous solutions derived from industrial process that use two columns: the first treatment column containing a mixed bed of ion exchange resins, in which the cation exchange resins are regenerated, and a second column, into which the anion exchange resins are transferred and regenerated, to be then reintroduced from the bottom into the above mentioned first column, where they rise through the cation exchange resins.
Abstract:
Equipment and procedures for regenerating ion exchange resin mixed beds, used for the desalination of water or of aqueous solutions from industrial processes (process solutions), that use two columns: the first treatment column (C1), containing a mixed bed of ion exchange resins, in which the cation exchange resins are regenerated, and a second column (C2) into which the anion exchange resins are transferred and regenerated, to be then reintroduced from the bottom into the above mentioned first column (C1), where they rise through the cation exchange resins and intimately mix with the anionic exchange resins.