Abstract:
A multimode receiver has a transconductance amplifier having an input terminal and adapted to receive a voltage RF signal and to deliver a current RF signal. The amplifier has a current mixer coupled to the transconductance amplifier and adapted to receive the current RF signal, the current mixer being adapted to combine the current RF signal with a signal generated by a local oscillator, the mixer generating an intermediate frequency signal having a frequency that equals a combination of a frequency of the current RF signal and a frequency of the local oscillator. A low-pass filter is coupled to the mixer and is adapted to generate a low-pass current signal. A transimpedance amplifier is coupled to the low-pass filter and is adapted to receive the low-pass current signal, the transimpedance amplifier being adapted to generate an intermediate frequency voltage signal proportional with the low-pass current signal. A first switch is adapted to receive a signal proportional with the intermediate frequency voltage signal at a first end, a second end being coupled to the input terminal and a second switch is coupled between the input terminal and a reference terminal. The first and second switches are mutually exclusive in an ON state in a specific mode of operation of the multimode receiver.
Abstract:
Calibration data for calibrating time to digital conversion is obtained by switching a feed circuit (20) of a time to digital converter between a normal operating mode or a calibration mode. A delay circuit (22) with a delay circuit input and a plurality of taps outputs respective, differently delayed versions of a signal from a delay circuit input. A sampling register (24) has data inputs coupled to the taps, and samples data from the data inputs in response to an active transition at a clock input. When in the normal operating mode, the feed circuit (2) feeds an oscillator signal of an oscillator circuit (10) to the delay circuit input and a reference signal to the clock input of the sampling register (24). When in the calibration mode, the feed circuit (20) supplies signals with transitions having timing controlled by the oscillator signal to both the delay circuit input and the clock input. The feed circuit (20) provides for selection of transitions of the oscillator signal that control timing of a first active transition at the clock circuit after a transition at the delay circuit input. A control circuit (28) switches the feed circuit between the normal operating mode and the calibration mode, and controls the feed circuit (20) successively to select a plurality of different transitions to control timing of the first active transition in the calibration mode. The control circuit reads out resulting data from the sampling register (24) for each selection and determine calibration data for the oscillator signal from said data.
Abstract:
The present invention relates to the antagonistic bacteria for controlling the Fusarium wilt of continuous cropping banana and their microbial organic fertilizer. It belongs to technology of intensive agricultural production. The present invention separates two antagonistic bacteria NJN-6 and NJN-11 and produces the microbial organic fertilizer through inoculating the two said strains into pig manure compost and rapeseed cake compost to conduct solid-state fermentation. The microbial organic fertilizer is characterized in that in the fertilizer, the content of each of the antagonistic bacteria NJN-6 and NJN-11 is above 1×108 cfu/g, total nitrogen is 4˜5% (weight percent), above 90% (weight percent) of the total nitrogen is organic nitrogen, total nitrogen-phosphorus-kalium nutrient is 6˜10% (weight percent) and organic matter is 30˜35% (weight percent). The results of experiment showed the showed that the prevention rate of the Fusarium wilt of banana reached more than 80% and the incidence rate can be controlled to less than 5% even on the seriously diseased terraces (seasonal incidence rate of 15% or more). The fertilizer can control the wilt effectively if they are applied to soil in successive years.
Abstract:
The present invention relates to a mixer circuit and method of frequency transformation, wherein an input signal is switched in accordance with a first local oscillator signal and in accordance with at least one second local oscillator signal having a smaller duty cycle than said first local oscillator signal, or having a respective predetermined phase shift with respect to said first local oscillator signal. Output signals obtained by the switching in accordance with the first and at least one second local oscillator signals are summed and the polarity of one of said first local oscillator signal and said at least one second local oscillator signal is switched in response to a control input, to thereby switch between a harmonic-rejection mode and a sub-harmonic mixing mode.
Abstract:
A circuit for producing multiple switching control signals for a harmonic rejection mixer from multiple phases of a digital local oscillator signal is presented, wherein a first waveform combiner circuit is arranged to generate from the multiple phases of the digital local oscillator signal at least one switching control signal by logical combining two from the multiple phases of a digital local oscillator signal, and a second waveform combiner circuit is arranged to generate from the multiple phases of the digital local oscillator signal at least one first switching control signal by logical combining one from the multiple phases of a digital local oscillator signal with a predetermined signal having a static logical value. To compensate for phase errors the schematic topology of the first and the second waveform combiner circuit are arranged to be fully symmetrical to each other in that in the first waveform combiner, the circuit part for providing the function of the second waveform combiner is used as a dummy circuit, and in the second waveform combiner, a circuit part for providing the function of the first waveform combiner is used as a dummy circuit. Accordingly, the sources for providing the multiple phases of the digital local oscillator signal see the same load, and hence required phase shift is guaranteed.
Abstract:
A data store is distributed between a server and a client. The distributed data store includes global data. A transformation is applied to the global data to generate client-specific data based on the global data. The client-specific data is stored on the client which uses the client-specific data to perform tasks relating to the client-specific data.