Abstract:
A method for operating a transportation vehicle, in particular, for driving the transportation vehicle into a predefined parking space, wherein a first trajectory for automated travel of the transportation vehicle into the predefined parking space is stored in a vehicle-side memory device, which trajectory has been detected during manual travel of the transportation vehicle into the predefined parking space and the first trajectory is assigned tolerance values for a deviation from the first trajectory, which is the maximum deviation by which the transportation vehicle deviates from the first trajectory during automated travel into the predefined parking space, wherein, in the case of at least one further instance of manual travel of the transportation vehicle into the predefined parking space, the further trajectory which is travelled along is detected automatically and the first trajectory and the further trajectory are compared with one another.
Abstract:
Technologies and techniques for anonymously providing data of a motor vehicle. A first dataset is generated by a motor vehicle, and the first dataset is anonymized using a vehicle computing unit. User related data and the anonymized first dataset are communicated to a first server system using the vehicle computing unit and the communicated user related data is deleted using the first server system. The anonymized first dataset is communicated to a second server system using the first server system after deletion of the user related data.
Abstract:
A method and a device for transmitting vehicle-based environment data of a transportation vehicle travelling on a predetermined section of a road to a backend device for collecting data records relating to the specified section of the road, wherein the backend includes a master data backend and a vehicle data backend that are independent of each other, including registration of the transportation vehicle with the actual vehicle identification number with the master data backend via a wireless communication, transmitting a pseudo-vehicle identification number that is different from the actual vehicle identification number to the transportation vehicle on the part of the master data backend, wherein the allocation of the pseudo-vehicle identification number to the actual vehicle identification number is known outside the transportation vehicle exclusively to the master data backend, and submitting data records or summaries of data records to the vehicle data backend using the pseudo-vehicle identification number exclusively.
Abstract:
A sensor for detecting measured values, a method, a device and a computer-readable storage medium with instructions for processing measured values. In a first step, a measured value is detected by a sensor. The detected measured value is then signed with the assistance of a certificate assigned to the sensor and forwarded to a network. The signed measured value is transmitted to a recipient through the network. Using the certificate, a check of the authenticity of the measured value by the recipient then occurs.
Abstract:
The invention relates to a method and an apparatus for visualizing an environment of a motor vehicle, wherein the apparatus has at least one camera for detecting an environment of the motor vehicle, at least one display unit, and an evaluation and control unit, which is designed to depict images of the environment on the display unit, depending on the pictures from the at least one camera, wherein the apparatus comprises a device for detecting a head position of a vehicle passenger, wherein the evaluation and control unit is designed so that the depiction on the display unit is adapted depending on the detected head position, so that the vehicle passenger sees a depiction of the environment of the motor vehicle that the vehicle passenger would see if the display unit were a transparent window of the motor vehicle.
Abstract:
A device and a method for detecting objects in the surroundings of a vehicle is provided. At least one reflection pattern is ascertained for at least one object class. Pulse echo measurements for m different transmitter/receiver geometries are performed. Echo signals in the pulse echo measurements are detected. Weights for the different objects of the corresponding class are calculated. The weight values thus ascertained are summed to form a weight, and the presence of objects of the at least one object class is ascertained using the weights thus ascertained.
Abstract:
A device for lateral environment detection of a motor vehicle and a method for the substantially simultaneous operation of a parking support device and a door protection device is provided. The parking support device and the door protection device perform an environment detection with structurally identical environmental sensors. In order to be able to operate these simultaneously or overlapping in time, without interference by cross echo pulse occurring, it is provided to operate the simultaneously operated environmental sensors at frequencies that are shifted relative to one another and of which at least one of the frequencies is also shifted with respect to a resonance frequency of the environmental sensors.
Abstract:
A method for collecting transportation vehicle-based data and transferring the data to a backend computer, wherein the respective data sets relate to predefined route sections travelled along by a swarm of data-collecting vehicles, wherein parameterized orders for the acquisition of transportation vehicle-based data are stored in the backend computer and each order includes the parameter of route section, which defines the route section for which transportation vehicle-related data is to be collected; the parameter of swarm size, which defines how many transportation vehicles per unit of time are to collect data for the specified route section; and the parameter time interval, which defines the time interval in which data is to be acquired for the route section. Route-related data is continuously transferred to the backend computer from each transportation vehicle of the swarm, wherein a header constitutes an overview of the transportation vehicle-based data stored temporarily in the transportation vehicle.
Abstract:
A method for a transportation vehicle of a transportation vehicle fleet for transmitting data to a data processing system including receiving a message, wherein the message includes information about data to be transmitted and information about a predetermined probability of the data transmission; determining whether the data to be transmitted are transmitted from the transportation vehicle to the data processing system, using a random number generator and the information about the predetermined probability of the data transmission; and sending the data to be transmitted to the data processing system, in response to determining that the data to be transmitted are transmitted from the transportation vehicle to the data processing system.
Abstract:
Technologies and techniques for anonymizing vehicle data. A data set is created on the basis of captured vehicle data and includes information regarding the location and/or time of the data capture. The information may be anonymized on the basis of traffic flow data by locally concealing the information regarding the location of the data capture and/or by temporally concealing the information regarding the time of the data capture. The traffic flow data may be based on group information received by the vehicle providing the vehicle data via vehicle-to-vehicle communication from other vehicles. A related motor vehicle and a network server directed to the anonymization is also provided herein.