Abstract:
The present invention relates to method and device for sharing state related information among a plurality of electronic devices and, more particularly, to method and device for predicting the state of a device on the basis of information shared among a plurality of electronic devices. In order to attain the purpose, a method for sharing state related information of a device, according to an embodiment of the present invention, comprises the steps of: generating a state model of a device on the basis of state related data; selecting one or more parameters for determining the state of the device on the basis of the generated state model; and transmitting the one or more selected parameters to at least one other device.
Abstract:
A semiconductor device may include a semiconductor substrate including an active region defined by a trench, a device isolation layer provided in the trench to surround the active region, a gate electrode extending in a direction crossing the active region, and formed on the active region and the device isolation layer, and a gate insulating layer between the active region and the gate electrode. The active region may have a first conductivity type, and the device isolation layer may include a first silicon oxide layer on an inner surface of the first trench and a different layer, selected from one of first metal oxide layer and a negatively-charged layer, on the first silicon oxide layer.
Abstract:
A semiconductor device may include a device isolation region configured to define an active region in a substrate, an active gate structure disposed in the active region, and a field gate structure disposed in the device isolation region. The field gate structure may include a gate conductive layer. The active gate structure may include an upper active gate structure including a gate conductive layer and a lower active gate structure formed under the upper active gate structure and vertically spaced apart from the upper active gate structure. The lower active gate structure may include a gate conductive layer. A top surface of the gate conductive layer of the field gate structure is located at a lower level than a bottom surface of the gate conductive layer of the upper active gate structure.