Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
A display substrate including a base substrate including a plurality of pixel areas, each of the plurality of pixel areas including an emission area and a transmission area, a pixel circuit layer disposed in the emission area and including at least one transistor, a pixel electrode disposed on the pixel circuit layer and connected to the pixel circuit layer, a hole injection layer selectively disposed on the pixel electrode in the emission area, an emission layer disposed on the hole injection layer of the emission area, an electron injection layer disposed on the base substrate on which the emission layer is disposed; and a common electrode disposed on the base substrate on which the electron injection layer is disposed.
Abstract:
Provided is a multi-display apparatus. The multi-display apparatus includes a first display including a region configured to allow external light to pass therethrough, a first module electrically coupled to the first display unit, a second display coupled to the first display, the second display overlapping the first module and being configured to not allow external light to pass therethrough, and a second module electrically coupled to the second display.
Abstract:
A method of manufacturing an organic light emitting display apparatus is provided. A plurality of first electrodes is formed on a substrate. An intermediate layer including an emission layer is formed on the plurality of first electrodes. A deposition mold including a plurality of auxiliary patterning lines is formed by performing a deposition process twice using a mask. The mask includes a plurality of aperture sets, each of the plurality of aperture sets corresponding to part of each of the plurality of auxiliary patterning lines. A plurality of second electrodes is formed on the intermediate layer by depositing a conductive material into the deposition mold.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light-emitting display device and a method of manufacturing the organic light-emitting display device are provided. The organic light-emitting display device includes a plurality of pixels each including: a first region including a light-emitting region for emitting light, a first electrode and an emission layer covering the first electrode being located in the light-emitting region; and a second region including a transmissive region for transmitting external light through the display device. The display device also includes: a third region between the pixels; a first auxiliary layer in the first and third regions; a second electrode on the first auxiliary layer in the first and third regions; a second auxiliary layer covering the second electrode and located in the first and second regions and not in the third region; and a third electrode on the second electrode in the third region.
Abstract:
A display device including a substrate; an organic light emission unit, which is arranged on the substrate, wherein light emission regions arranged in a first direction emit light of a same color and light emission regions adjacent to one another from among light emission regions arranged in a second direction crossing the first direction emit light of different colors; a counter electrode, which is arranged to cover at least the light emission regions; and an auxiliary electrode, which is formed on the auxiliary electrode, does not overlap the light emission regions, and extends in the second direction.
Abstract:
A transparent display panel includes a plurality of unit pixels. Each of the unit pixels includes a non-transparent region in which a first light-emitting element that generates and outputs first color light and a second light-emitting element that generates and outputs second color light are disposed and a transparent region in which a third light-emitting element that generates and outputs third color light is disposed.
Abstract:
An exemplary embodiment of the present inventive concept provides a display device including: a substrate; a plurality of first wires extending along a first direction on the substrate; a first insulating layer disposed on the plurality of first wires; a plurality of second wires disposed on the first insulating layer and extending along a second direction crossing the first direction; a second insulating layer disposed on the plurality of second wires; and a plurality of pixel electrodes disposed on the second insulating layer, wherein the second insulating layer includes a first opening which is disposed between the plurality of pixel electrodes.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.