Abstract:
A liquid crystal display panel, including a unit pixel including a first substrate having a first alignment film, a second substrate having a second alignment film spaced apart from and facing the first alignment film, and a liquid crystal layer interposed between the first alignment film and the second alignment film; and first and second adjacent domains, each of which includes a domain boundary region defining part of an area between the adjacent domains, and a normal-luminance region adjacent to the domain boundary region, wherein pretilt angles of liquid crystal molecules near the first alignment film in the domain boundary regions are greater than pretilt angles of liquid crystal molecules near the first alignment film in the normal-luminance regions.
Abstract:
A display apparatus includes an array substrate an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area, a non-display area, including first and second non-display areas, a pad area, the first non-display area adjacent to the pad area, a first base substrate disposed in the display area and in the non-display area, an organic polymer layer disposed in the pad area and in the first non-display area, a thin film transistor disposed in the display area, a pixel electrode connected to the thin film transistor, and a signal input pad connected to the thin film transistor and disposed on the organic polymer layer in the pad area. The organic polymer layer is disposed on the first base substrate in the first non-display area.
Abstract:
A liquid crystal display device is fabricated by forming a first alignment layer on a first base substrate. A second alignment layer is formed on a second base substrate. A liquid crystal is disposed on one of the first alignment layer and the second alignment layer. The first base substrate and the second base substrate are combined. At least one of the first alignment layer and the second alignment layer is formed by forming an alignment solution on a corresponding base substrate. An alignment layer is formed by curing the alignment solution. The alignment layer is aligned by radiating a light onto the base substrate, first cleaning the base substrate, and baking the alignment layer.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area and a non-display area surrounding the display area, and the non-display area includes a first non-display area disposed adjacent to a side portion of the display area and a second non-display area other than the first non-display area. The first non-display area overlaps the opposite substrate. The array substrate and the opposite substrate have the same or substantially the same area and a wire member is disposed under the array substrate to be connected to an external circuit module. Accordingly, the display panel does not need an extra space for the wire member, and thus the non-display area is reduced.
Abstract:
An electronic device includes a light source member configured to provide a first light, a color conversion member disposed on the light source member and including a first conversion material that converts the first light into a second light and a second conversion material that converts the first light into a third light, and a low-refractive index layer disposed on the light source member and disposed on at least one of upper and lower portions of the color conversion member. The low-refractive index layer includes a matrix part, a plurality of hollow inorganic particles dispersed in the matrix part, and a plurality of void parts defined by the matrix part.
Abstract:
A photo alignment including a copolymer of a diamine and a dianhydride, wherein the copolymer includes a repeating unit including a first group derived from the diamine and a second group derived from the dianhydride, and wherein any one of the first group and the second group includes a photoreactive group and the other one of the first group and the second group includes at least one selected from a tert-butyl group, a tert-butoxy group, a tert-butyloxycarbonyl group, and a di-tert-butyloxycarbonyl group.
Abstract:
A photo alignment including a copolymer of a diamine and a dianhydride, wherein the copolymer includes a repeating unit including a first group derived from the diamine and a second group derived from the dianhydride, and wherein any one of the first group and the second group includes a photoreactive group and the other one of the first group and the second group includes at least one selected from a tert-butyl group, a tert-butoxy group, a tert-butyloxycarbonyl group, and a di-tert-butyloxycarbonyl group.
Abstract:
A display apparatus includes an array substrate an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area, a non-display area, including first and second non-display areas, a pad area, the first non-display area adjacent to the pad area, a first base substrate disposed in the display area and in the non-display area, an organic polymer layer disposed in the pad area and in the first non-display area, a thin film transistor disposed in the display area, a pixel electrode connected to the thin film transistor, and a signal input pad connected to the thin film transistor and disposed on the organic polymer layer in the pad area. The organic polymer layer is disposed on the first base substrate in the first non-display area.
Abstract:
A liquid crystal display device is provided. An exemplary embodiment of the present invention provides a liquid crystal display device including: a first substrate; a thin film transistor disposed on the first substrate; a first electrode connected to the thin film transistor; and a first alignment layer disposed on the first electrode. The first alignment layer includes: a copolymer formed from at least one compound of cyclobutane dianhydride (CBDA) and a cyclobutane dianhydride derivative, and a first diaminean including alkylene group (—CkH2k−, k being a natural number); and a cross-linking agent including an alkylene group (—CnH2n−, n being a natural number), wherein the copolymer includes polyimide.
Abstract:
A method of manufacturing a photoalignment layer includes: applying a photoalignment agent including a copolymer of at least one of cyclobutanedianhydride and a cyclobutanedianhydride derivative, and diamine, and a crosslinking agent including an alkylene group having a formula —CnH2n—, wherein n is a natural number, on a substrate; pre-baking the photoalignment agent applied on the substrate to form a pre-baked photoalignment agent; hard-baking the pre-baked photoalignment agent to form a hard-baked photoalignment agent; irradiating the hard-baked photoalignment agent with a light source thereby photoaligning the photoalignment agent; and secondarily baking the photoalignment agent irradiated with the light source, where in the application of the photoalignment agent on the substrate, the photoalignment agent applied on an edge portion of the substrate is applied in about 30 to about 70 wt %, relative to the photoalignment agent applied on the center portion of the substrate.