Abstract:
A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
There is provided a display device including a display including a first pixel connected to a first data line and a second pixel connected to a second data line, a data signal generator configured to generate an output signal, and a signal divider configured to divide the output signal, to generate a first data signal and a second data signal, and to apply the first data signal and the second data signal to the first data line and the second data line, respectively, wherein the data signal generator is configured to generate the output signal based on a coupling effect of a first parasitic capacitor formed between the first data line and the second data line and a coupling effect of a parasitic capacitor of a data line formed by the first data line and second data line.
Abstract:
A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
Abstract:
A gate driver circuit includes an N-th stage (‘N’ is a natural number) The N-th stage (‘N’ is a natural number) includes a pull-up part configured to output an N-th gate signal using a first clock signal in response to a node signal of the control node, a carry part configured to output an N-th carry signal using the first clock signal in response to the node signal of the control node, an first output part connected to an n-th gate line and configured to output an n-th gate signal using the N-th gate signal in response to a second clock signal having a period shorter than the first clock signal (‘n’ is a natural number), and a second output part connected to an (n+1)-th gate line and configured to output an (n+1)-th gate signal using the N-th gate signal in response to an second inversion clock signal having a phase opposite to the second clock signal.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit, a second output unit and a controller. The first driver controls voltages of first and second nodes, according to a first power source, a third power source, a start signal or a carry signal of a previous stage input to a first input terminal, and a clock signal supplied to a second input terminal. The second driver controls voltages of third and fourth nodes, according to voltages of the first power source, the third power source, the first input terminal and the first and second nodes. The first output unit outputs a carry signal to a first output terminal, according to voltages of the first power source, the second input terminal and the third and fourth nodes. The second output unit outputs a scan signal to a second output terminal, according to voltages of the second power source, the second input terminal and the third and fourth nodes. The controller is electrically coupled to the first output terminal and the second driver.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit and a second output unit. The first driver controls voltages of first and second nodes, according to a first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a first clock signal supplied to a second input terminal, and a second clock signal supplied to a third input terminal. The second driver controls a voltage of a third node, according to the first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a carry signal of a next stage supplied to a fourth input terminal, and the voltage of the second node.
Abstract:
A gate driving circuit includes a pull-up control part, a pull-up part, a carry part, a first pull-down part and a second pull-down part. The pull-up control part applies a carry signal from a previous stage to a first node. The pull-up part outputs an N-th gate output signal based on a clock signal. The carry part outputs an N-th carry signal based on the clock signal in response to the signal applied to the first node. The first pull-down part includes a plurality of transistors connected to each other in series. The first pull-down part pulls down a signal at the first node to a second off voltage in response to a carry signal of a next stage. The second pull-down part pulls down the N-th gate output signal to a first off voltage in response to the carry signal of the next stage.
Abstract:
A gate driving circuit includes a pull-up control part, a pull-up part, a carry part, a first pull-down part and a second pull-down part. The pull-up control part applies a carry signal from a previous stage to a first node. The pull-up part outputs an N-th gate output signal based on a clock signal. The carry part outputs an N-th carry signal based on the clock signal in response to the signal applied to the first node. The first pull-down part includes a plurality of transistors connected to each other in series. The first pull-down part pulls down a signal at the first node to a second off voltage in response to a carry signal of a next stage. The second pull-down part pulls down the N-th gate output signal to a first off voltage in response to the carry signal of the next stage.