Abstract:
An organic light emitting diode (OLED) display includes a substrate, a thin film transistor formed on the substrate, a first electrode formed on the thin film transistor and electrically connected to the thin film transistor, a hole injection layer (HIL) formed on the first electrode, a hole transport layer (HTL) formed on the hole injection layer (HIL), an emission layer formed on the HTL, an electron transport layer (ETL) formed on the emission layer, a first buffer layer located on the ETL, and a second electrode formed on the first buffer layer.
Abstract:
An organic light emitting device including a plurality of organic layers between a first electrode and an emitting layer, wherein the organic layer includes an electron blocking layer. In one embodiment, a first organic layer, an electron blocking layer, a second organic layer and an emitting layer are formed on the first electrode. The electron blocking layer has a Lowest Unoccupied Molecular Orbital (LUMO) level which is lower than that of the first organic layer. Thus, the electron blocking layer traps excess electrons injected from the emitting layer, thereby improving lifetime characteristics of the OLED.
Abstract:
A full color light emitting device having a reduced driving voltage includes a substrate having a first subpixel, a second subpixel, and a third subpixel. A plurality of first electrodes are in the first subpixel, the second subpixel, and the third subpixel. A second electrode faces the first electrode. An emission layer is between the first electrode and the second electrode. The emission layer includes a first emission layer in the first subpixel for emitting a first color light in the first subpixel, a second emission layer in the first subpixel for emitting a second color light in the second subpixel, and a third emission layer in the first subpixel, the second subpixel and the third subpixel, for emitting a third color light in the third subpixel. The third emission layer includes at least one compound represented by Formula 1:
Abstract:
An organic light emitting diode display includes: a substrate; a thin film transistor provided on the substrate; a first electrode connected to the thin film transistor; an organic emission layer provided on the first electrode; an interlayer provided on the organic emission layer; an electron auxiliary layer provided on the interlayer and including an electron injection layer (EIL) and an electron transport layer (ETL); and a second electrode provided on the electron auxiliary layer, wherein the interlayer is made by mixing a material of the electron auxiliary layer.
Abstract:
A deposition apparatus includes: a deposition source including a spray nozzle linearly arranged in a first direction and discharging a deposition material; and a pair of angle control members disposed at both sides of the deposition source and controlling a discharging direction angle of the deposition material. Each angle control member includes a rotation axis parallel to the first direction, and a plurality of shielding plates installed about the rotation axis and separated from each other by a predetermined interval around the rotation axis. Although the deposition angle is changed according to the increasing of the process time, the deposition angle is compensated to form a uniform thin film. Also, the organic thin film may be uniformly deposited through each pixel of an organic light emitting diode (OLED) display, thereby increasing luminance uniformity for each pixel.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.
Abstract:
A deposition apparatus includes: a deposition source including a spray nozzle linearly arranged in a first direction and discharging a deposition material; and a pair of angle control members disposed at both sides of the deposition source and controlling a discharging direction angle of the deposition material. Each angle control member includes a rotation axis parallel to the first direction, and a plurality of shielding plates inst7lled about the rotation axis and separated from each other by a predetermined interval around the rotation axis. Although the deposition angle is changed according to the increasing of the process time, the deposition angle is compensated to form a uniform thin film. Also, the organic thin film may be uniformly deposited through each pixel of an organic light emitting diode (OLED) display, thereby increasing luminance uniformity for each pixel.