Abstract:
A signal processing unit calculates a first difference in time of arrival of sound from a sound source to a first and to a second microphone comprising a microphone array and calculates a second difference in time of arrival, which is the difference between the first difference in time of arrival and an actual time, of arrival, and determines the position of the sound source based on the sum of the first difference in time of arrival and the second difference in time of arrival.
Abstract:
Disclosed herein is a liquid crystal display device formed by laminating at least two first and second liquid crystal panels, the liquid crystal panels being each formed by disposing a liquid crystal layer between two transparent substrates arranged so as to be opposed to each other and two-dimensionally arranging pixels in a form of a matrix on one of the two substrates, and disposing a backlight on a side of the first liquid crystal panel. The liquid crystal display device includes: a first driver configured to drive the first liquid crystal panel on a side of the backlight by n-time speed driving in which one frame period is divided into n fields; and a second driver configured to drive the second liquid crystal panel on a display surface side by normal driving in which one frame period is not divided.
Abstract:
A waterproof slide fastener where first and second through-holes are drilled in a tape side edge portion of a waterproof tape at specific intervals from one another, and first and second halves of a fastener element are integrally connected to each other through first through-holes. A stopper includes a body portion and an extension portion extending from the body portion. First and second halves of the stopper straddle a pair of waterproof tapes and are integrally connected to each other through second through-holes. According to the waterproof slide fastener, a manufacturing step thereof can be simplified, and it is possible to effectively prevent water from entering the waterproof slide fastener even if it receives a lateral pulling force.
Abstract:
A purpose of the invention is to provide a noise gate that can output an audio signal in which only a stationary noise is removed, without degrading an utterance voice of a speaking person. A sound collection device 1 includes an FFT processing unit 11, the noise gate 12, and an IFFT processing unit 13. The sound collection device 1 transforms a collected audio signal NET into a frequency spectrum NE′N by using the FFT processing unit 11. The noise gate 12 estimates a noise spectrum N′N of a stationary noise based on the frequency spectrum NE′N of the audio signal. The noise gate 12 decreases a signal level (a gain) of the audio signal in a case where a signal level ratio of the frequency spectrum NE′N of the audio signal to the noise spectrum N′N is less than a threshold value, and outputs the audio signal. The sound collection device 1 outputs an audio signal CO′T which is generated in such a manner that the IFFT processing unit 13 inversely transforms a frequency spectrum CO′N after removing the stationary noise N′N.
Abstract:
A howling canceller is adapted to an acoustic system having a speaker and first and second microphones. The speaker and the first microphone form a first acoustic feedback loop; the speaker and the second microphone form a second acoustic feedback loop. The howling canceller includes a howling suppressing unit for performing suppression processing in such a way that: frequency components at which howling is possibly occurring are detected in each of the sound signals picked up by the first and second microphones; the detected frequency components of the sound signals picked up by the first and second microphones are compared with each other on a per-frequency basis and a frequency component having larger power is detected; and based on the comparison results, the larger power frequency component of at least one of the sound signals picked up by the first and second microphones is suppressed.
Abstract:
Provided is a method of manufacturing a magnetic recording mediums comprising employing a lifting and drying device for cleaning substrates by immersing one or more disk-like substrates with a central hole into a cleaning liquid disposed in a cleaning tank and lifting and drying the substrates, the lifting and drying device including: a hanger mechanism that is inserted through the central hole of the substrates and supports a plurality of the substrates while being hung thereon; an elevation mechanism that elevates the hanger mechanism between a position where the substrates are immersed into the cleaning liquid inside the cleaning tank and a position where the substrates are lifted from the cleaning tank; and an ejection mechanism that is disposed in the cleaning tank and ejects the cleaning liquid from the downside of the hanger mechanism toward the substrate.
Abstract:
A communication system, a relay device, and a communication method are provided in a configuration where multiple communication devices are divided into multiple groups, a relay device is provided for each group, and the relay device relays data exchanges between groups. The data that is exchanged between a second relay device and an external wireless communication device is stored such that it is distributed among multiple databases of first relay units. Data received from the external communication device is stored in an individual region in the database of the first relay device and a data storage destination table in the second relay device is encrypted. If the first relay device stores data received from an ECU in the database, the second relay device is notified, and the second relay device updates the data storage destination table according to the notification.
Abstract:
An acoustic apparatus without increasing noise etc. even when plural directional microphones collect sounds from a place of the same distances is provided. Sound signals output from the microphone arrays are subjected to phase shift by phase shift circuits 211A to 211H, and the sound signals are combined by an adder 212. The phase shift circuits 211A to 211H performs phase shifts according to installation positions of the microphone arrays. The phase shift circuit 211A makes the shift 0 degree, the phase shift circuit 211B makes the shift 45 degrees, the phase shift circuit 211C makes the shift 90 degrees, and sequentially to the phase shift circuit 211H, the shifts are made according to rotational angles.
Abstract:
A game apparatus displays on a screen an image of a virtual space as viewed from a predetermined viewing direction. The game apparatus displays a viewing direction map in response to a predetermined condition being satisfied, such that the viewing direction is set to a predetermined direction on the screen. Furthermore, the game apparatus displays a fixed direction map in response to a predetermined condition being satisfied, such that a direction preset in the virtual space is set to a predetermined direction on the screen. Note that when map images are displayed, the fixed direction map is preferably displayed after the viewing direction map.
Abstract:
A teleconferencing apparatus includes the functions of a transmitting unit and a receiving unit and the transmitting unit transmits a sound signal formed from sound pick-up signals of a microphone array made up of microphones Mi (i=1 to N) and position information. The position information is provided by forming a plurality of sound pick-up beams directed in a specific direction and selecting the sound pick-up beam with the largest volume. In the receiving unit, a parameter calculation section sets a virtual sound source based on data of a reception signal and sets a delay parameter. A virtual sound source generation signal processing section forms a sound emission beam based on the parameters and outputs the beam to a loudspeaker SPi.