Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer. In one aspect an apparatus for wirelessly transferring power from a charging power source to a device is provided. The apparatus includes a first strand wound in one or more turns and operationally coupled to the charging power source and a second strand wound together with the first strand in one or more turns and operationally coupled to the charging power source. The apparatus further includes an inductor circuit connected to the first strand and disconnected from the second strand. The inductor circuit is further configured to reduce a current difference between a first current flowing through the first strand and a second current flowing through the second strand.
Abstract:
Exemplary embodiments are directed to wireless power. A wireless charging device may comprise a charging region configured for placement of one or more chargeable devices. The charging device may further include at least one transmit antenna configured for transmitting wireless power within the charging region. Furthermore, the charging device is configured to exchange data between at least one chargeable device of the one or more chargeable devices.
Abstract:
A wireless power bridge that allows magnetic transmission of energy across a solid barrier such as a wall. A circuit is described for controlling the operation.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer. In one aspect an apparatus for wirelessly transferring power from a charging power source to a device is provided. The apparatus includes a first strand wound in one or more turns and operationally coupled to the charging power source and a second strand wound together with the first strand in one or more turns and operationally coupled to the charging power source. The apparatus further includes an inductor circuit connected to the first strand and disconnected from the second strand. The inductor circuit is further configured to reduce a current difference between a first current flowing through the first strand and a second current flowing through the second strand.
Abstract:
The disclosure provides systems, methods, and apparatus for wireless power transfer. In one aspect, an apparatus configured to receive wireless power from a transmitter is provided. The apparatus includes an inductor having an inductance value. The apparatus further includes a capacitor electrically connected to the inductor and having a capacitance value. The apparatus further includes an optimizing circuit configured to optimize transfer efficiency of power received wirelessly from the transmitter, provided that an amount of the power received wirelessly and provided to a load is greater than or equal to a received power threshold, or optimize the amount of the power received wirelessly from the transmitter, provided that the power transfer efficiency is greater than or equal to an efficiency threshold.
Abstract:
This disclosure provides systems, methods and apparatus for wireless power transfer. In one aspect the disclosure provides an apparatus for wirelessly communicating power. The apparatus includes a first conductive structure, with a length greater than a width, configured to wirelessly receive power via a magnetic field. The first conductive structure includes two substantially co-planar loops. The first conductive structure has a first edge and a second edge each intersecting a geometric line along the length of the first conductive structure. The apparatus further includes a second conductive structure, with a length greater than width, positioned between the first conductive structure and a magnetic material and configured to wirelessly receive power via the magnetic field. The length of the second conductive structure is substantially equal to at least a distance along the geometric line between the first edge and the second edge of the first conductive structure.
Abstract:
A wireless power bridge that allows magnetic transmission of energy across a solid barrier such as a wall. A circuit is described for controlling the operation.
Abstract:
An apparatus for detecting a presence of an object can include a plurality of electrically conductive loops arranged in an array. The apparatus includes a sensor circuit configured to determine a characteristic associated with each of the plurality of loops. The apparatus includes a hardware processor configured to, for each loop of the plurality of loops, determine a parameter based on the characteristic associated with the loop and the characteristic associated with at least one adjacent loop. The hardware processor may be further configured to determine the presence of the object based on the parameter. The parameter may comprise a sum of a difference between the characteristic associated with the loop and a reference value for the characteristic, and a difference between the characteristic associated with each of the at least one adjacent loop and the reference value.
Abstract:
A wireless power transmission system is disclosed. In one aspect, the system includes a transmitting antenna configured to transmit power, via a magnetic field, to a receiving antenna to power a load. The system also includes a tuning loop electrically isolated from the transmitting antenna and being movable relative to the transmitting antenna to adjust a coupling between the transmitting antenna and the tuning loop.
Abstract:
Exemplary embodiments are directed to bidirectional wireless power transfer using magnetic resonance in a coupling mode region between a charging base (CB) and a battery electric vehicle (BEV). For different configurations, the wireless power transfer can occur from the CB to the BEV and from the BEV to the CB.