Abstract:
This disclosure provides systems, methods and apparatus for touch and gesture recognition, using a field sequential color display. The display includes a processor, a lighting system, and an arrangement for spatial light modulation that includes an array of light modulators. Each light modulator is switchable between an open position that permits transmittance of light from the lighting system through a respective aperture and a shut position that blocks light transmission through the respective aperture. The processor switches the light modulators in accordance with a first modulation scheme to render an image and in accordance with a second modulation scheme to selectively pass object illuminating light through at least one of the respective apertures. A light sensor receives light resulting from interaction of the object illuminating with an object and outputs a signal to the processor. The processor recognizes, from the output of the light sensor, a characteristic of the object.
Abstract:
An improved wireless device generates a customized representation of a keyboard for a touch-sensitive screen. The wireless device generates an anatomical model specific to the operator of the wireless device in response to an operator contacting their fingertips in a “typing” position as if the operator were about to use a standard QWERTY keyboard. The anatomical model is used to derive a keyboard layout optimized for a present operator of the wireless device.
Abstract:
This disclosure provides systems, methods and apparatus for touch and gesture recognition, using a field sequential color display. The display includes a processor, a lighting system, and an arrangement for spatial light modulation that includes an array of light modulators. Each light modulator is switchable between an open position that permits transmittance of light from the lighting system through a respective aperture and a shut position that blocks light transmission through the respective aperture. The processor switches the light modulators in accordance with a first modulation scheme to render an image and in accordance with a second modulation scheme to selectively pass object illuminating light through at least one of the respective apertures. A light sensor receives light resulting from interaction of the object illuminating with an object and outputs a signal to the processor. The processor recognizes, from the output of the light sensor, a characteristic of the object.
Abstract:
Exemplary embodiments are directed to wireless power. A wireless charging device may comprise a charging region configured for placement of one or more chargeable devices. The charging device may further include at least one transmit antenna configured for transmitting wireless power within the charging region. Furthermore, the charging device is configured to exchange data between at least one chargeable device of the one or more chargeable devices.
Abstract:
This disclosure provides systems, methods and apparatus for touch and gesture recognition, using a field sequential color display. The display includes a processor, a lighting system, and an arrangement for spatial light modulation that includes an array of light modulators. Each light modulator is switchable between an open position that permits transmittance of light from the lighting system through a respective aperture and a shut position that blocks light transmission through the respective aperture. The processor switches the light modulators in accordance with a first modulation scheme to render an image and in accordance with a second modulation scheme to selectively pass object illuminating light through at least one of the respective apertures. A light sensor receives light resulting from interaction of the object illuminating with an object and outputs a signal to the processor. The processor recognizes, from the output of the light sensor, a characteristic of the object.
Abstract:
This disclosure provides systems, methods and apparatus for touch and gesture recognition, using a field sequential color display. The display includes a processor, a lighting system, and an arrangement for spatial light modulation that includes a number of apertures, and devices for opening and shutting the apertures. A light directing arrangement includes at least one light turning feature. The display lighting system is configured to emit visible light and infrared (IR) light through at least a first opened one of the plurality of apertures. The light turning feature is configured to redirect IR light emitted through the opened aperture into at least one lobe, and to pass visible light emitted by the display lighting system through the opened aperture with substantially no redirection.
Abstract:
This disclosure provides systems, methods and apparatus for touch and gesture recognition, using a field sequential color display. The display includes a processor, a lighting system, and an arrangement for spatial light modulation that includes an array of light modulators. Each light modulator is switchable between an open position that permits transmittance of light from the lighting system through a respective aperture and a shut position that blocks light transmission through the respective aperture. The processor switches the light modulators in accordance with a first modulation scheme to render an image and in accordance with a second modulation scheme to selectively pass object illuminating light through at least one of the respective apertures. A light sensor receives light resulting from interaction of the object illuminating with an object and outputs a signal to the processor. The processor recognizes, from the output of the light sensor, a characteristic of the object.
Abstract:
Exemplary embodiments are directed to wireless power. A wireless charging device may comprise a charging region configured for placement of one or more chargeable devices. The charging device may further include at least one transmit antenna configured for transmitting wireless power within the charging region. Furthermore, the charging device is configured to exchange data between at least one chargeable device of the one or more chargeable devices.
Abstract:
A display device may include a display, an optical touch system proximate the display and a control system. The control system may be capable of receiving input for initiating a peer-to-peer data transfer and of performing an authentication process for the peer-to-peer data transfer. The authentication process may involve obtaining fingerprint images via the optical touch system. The display device may provide a prompt to position the display device proximate a second device, e.g., with the display adjacent to a display of the second device. The display may display data transfer parameters for the peer-to-peer data transfer. The optical touch system may receive a confirmation that the second device received the data transfer parameters. The peer-to-peer data transfer may be performed, at least in part, by an array of optical transceivers.
Abstract:
A display device may include a display, an optical touch system proximate the display and a control system. The control system may be capable of receiving input for initiating a peer-to-peer data transfer and of performing an authentication process for the peer-to-peer data transfer. The authentication process may involve obtaining fingerprint images via the optical touch system. The display device may provide a prompt to position the display device proximate a second device, e.g., with the display adjacent to a display of the second device. The display may display data transfer parameters for the peer-to-peer data transfer. The optical touch system may receive a confirmation that the second device received the data transfer parameters. The peer-to-peer data transfer may be performed, at least in part, by an array of optical transceivers.