Abstract:
In general, techniques are described for coding a current video block within a current picture based on a predictor block within the current picture, the predictor block identified by a block vector. The techniques include identifying an unavailable pixel of the predictor block, obtaining a value for the unavailable pixel based on at least one neighboring reconstructed pixel of the unavailable pixel, and coding the current video block based on a version of the predictor block that includes the obtained value for the unavailable pixel. The unavailable pixel may be located outside of a reconstructed region of the current picture.
Abstract:
In an example, a method of decoding video data includes generating a residual block of a picture based on a predicted residual block including reconstructing one or more residual values of the residual block based on one or more predicted residual values of the residual block. The method also includes generating a current block of the picture based on a combination of the residual block and a prediction block of the picture.
Abstract:
In an example, a method of decoding video data includes generating a residual block of a picture based on a predicted residual block including reconstructing one or more residual values of the residual block based on one or more predicted residual values of the residual block. The method also includes generating a current block of the picture based on a combination of the residual block and a prediction block of the picture.
Abstract:
A video coder may include a current picture and a reference picture in a reference picture list. The video coder may determine a co-located block of the reference picture. The co-located block is co-located with a current block of the current picture. Furthermore, the video coder derives a temporal motion vector predictor from the co-located block and may determine the temporal motion vector predictor has sub-pixel precision. The video coder may right-shift the temporal motion vector predictor determined to have sub-pixel precision. In addition, the video coder may determine, based on the right-shifted temporal motion vector predictor, a predictive block within the current picture.
Abstract:
Techniques coding video data, including a mode for intra prediction of blocks of video data from predictive blocks of video data within the same picture, may include determining a predictive block of video data for the current block of video data, wherein the predictive block of video data is a reconstructed block of video data within the same picture as the current block of video data. A two-dimensional vector, which may be used by a video coder to identify the predictive block of video data, includes a horizontal displacement component and a vertical displacement component relative to the current block of video data. The mode for intra prediction of blocks of video data from predictive blocks of video data within the same picture may be referred to as Intra Block Copy or Intra Motion Compensation.
Abstract:
In general, the disclosure describes techniques related to block vector coding for Intra Block Copy and Inter modes. In one example, the disclosure is directed to a video coding device comprising a memory configured to store video data and one or more processors. The video coding device is configured to determine a reference picture used for coding the current video block and determine a picture order count (POC) value for the reference picture. In response to the POC value for the reference picture being equal to a POC value for a current picture that includes the current video block, the video coding device sets a value of a syntax element to indicate that a reference picture list includes the current picture. Otherwise, the video coding device sets the value of the syntax element to indicate that the reference picture list does not include the current picture.
Abstract:
A method of decoding video data comprising receiving a first block of video data in a first frame of video data, the first block of video data being encoded relative to a first predictive block in the first frame of video data, the first predictive block being identified by a block vector, and decoding the block vector using a motion vector prediction process and a same motion vector candidate list as used for decoding a motion vector, wherein the motion vector is used to identify an inter-frame predictive block for a second block of video data coded using inter coding.
Abstract:
A device for decoding video data includes a memory configured to store the video data and one or more processors configured to receive a slice of the video data, parse an intra block copy (IBC) syntax element to determine that an IBC mode is enabled for the slice, parse a slice type syntax element associated with the slice to determine the slice is an I slice, and decode the slice as an I slice by decoding all blocks of the slice using intra prediction coding modes.
Abstract:
An example method for decoding video data includes receiving syntax elements (SEs) for a component of a block vector that represents a displacement between a current block of video data and a predictor block of video data; decoding the SEs to determine a value of the component by at least: decoding a first SE to determine whether or not an absolute value of the component (AbsValcomp) is greater than zero; where AbsValcomp is greater than zero, decoding a second SE to determine whether AbsValcomp is greater than a threshold based on an order of a set of codes; where AbsValcomp is greater than the threshold, decoding, using the set of codes, a third SE to determine AbsValcomp minus an offset based on the order of the set of codes; and where AbsValcomp is greater than zero, decoding a fourth SE to determine a sign of the value of the component.
Abstract:
According to aspects of this disclosure, a device for decoding video data includes a memory configured to store the video data and a video decoder comprising one or more processor configured to determine that a current block of the video data is to be decoded using a 1D dictionary mode; receive, for a current pixel of the current block, a first syntax element indicating a starting location of reference pixels and a second syntax element identifying a number of reference pixels; based on the first syntax element and the second syntax element, locate a plurality of luma samples corresponding to the reference pixels; based on the first syntax element and the second syntax element, locate a plurality of chroma samples corresponding to the reference pixels; and copy the plurality of luma samples and the plurality of chroma samples to decode the current block.