Abstract:
Techniques for using multiple modulation schemes for a single packet are described. Each data packet is processed and transmitted in up to T blocks, where T>1. Multiple modulation schemes are used for the T blocks to achieve good performance. A transmitter encodes a data packet to generate code bits. The transmitter then forms a block of code bits with the code bits generated for the packet, determines the modulation scheme to use for the block (e.g., based on a mode/rate selected for the packet), maps the code bits for the block based on the modulation scheme to obtain data symbols, and processes and transmits the block of data symbols to a receiver. The transmitter generates and transmits another block in similar manner until the data packet is decoded correctly or all T blocks have been transmitted. The receiver performs the complementary processing to receive and decode the packet.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that acquires information regarding an interfering non-serving cell and uses the information to improve decoding of serving cell signals. The method includes receiving, from a serving evolved Node B (eNB), information that includes one or more transmission characteristics of at least one non-serving cell and performing at least one of interference cancellation, demodulation, or provides an improved channel quality indicator (CQI) based on the received information.
Abstract:
Systems and methodologies are described that facilitate providing high reuse for transmitting reference signals, such as positioning reference signals (PRS) and cell-specific reference signals (CRS), to improve hearability thereof for applications such as trilateration and/or the like. In particular, PRSs can be transmitted in designated or selected positioning subframes. Resource elements within the positioning subframe can be selected for transmitting the PRSs and can avoid conflict with designated control regions, resource elements used for transmitting cell-specific reference signals, and/or the like. Resource elements for transmitting PRSs can be selected according to a planned or pseudo-random reuse scheme. In addition, a transmit diversity scheme can be applied to the PRSs to minimize impact of introducing the PRSs to legacy devices. Moreover, potions of a subframe not designated for PRS transmission can be utilized for user plane data transmission.
Abstract:
Systems and methodologies are described that facilitate avoiding interference with disparate communication technologies when allocating and/or utilizing wireless communication resources. Access points can generate resource assignments for mobile devices based at least in part on resources utilized by the disparate communication technology devices, such as to avoid such resources, allocate narrow bands over such resources, avoid or limit allocations in a measurement gap during which disparate communication technology devices communicate, and/or the like to mitigate interference over the resources. Mobile devices can provide such information to the access point, such as a communication technology to avoid interfering, resources utilized by devices of the communication technology, etc. This information can be acquired by receiving signals from the devices, detecting presence of the devices, and/or the like. In addition, mobile device can reduce transmission power over resources used by the disparate communication technology.
Abstract:
Methods and apparatus for transmitting modulation parameters are disclosed. The apparatus and methods provide determination of when a particular modulation scheme is used by an access point. One or more modulation parameters associated with the particular modulation scheme and one or more timing values associated with the particular modulation scheme are then determined and transmitted using a portion of a broadcast channel transmitted by the access point.
Abstract:
Techniques for mitigating pilot pollution in a wireless network are described. In an aspect, pilot pollution may be mitigated by reducing density and/or transmit power of common pilots whenever possible. A cell may send a common pilot at a first density and a first transmit power level during a first time period and may send the common pilot at a second density and a second transmit power level during a second time period. The second density may be lower than the first density and/or the second transmit power level may be lower than the first transmit power level. Lower density may be achieved by sending the common pilot less frequently, on fewer subcarriers, and/or from fewer antennas. The cell may determine whether to reduce the density and/or transmit power of the common pilot based on network loading, SINRs of terminals, etc. In another aspect, pilot pollution may be mitigated by performing pilot cancellation at a terminal.
Abstract:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.
Abstract:
A venue-cast system and method for providing and receiving venue level transmissions and services, including discovery of a venue specific transmission by receiving an overhead signal from a non-venue network, extracting information for receiving the venue specific transmission from the overhead signal, and tuning to receive the venue specific transmission based on the extracted information. The venue level transmission may be provided and received in a manner that does not prevent an access terminal from receiving a local area or wide area transmission.
Abstract:
Techniques for mitigating interference on control channels in a wireless communication network are described. In an aspect, high interference on radio resources used for a control channel may be mitigated by sending a request to reduce interference to one or more interfering stations. Each interfering station may reduce its transmit power on the radio resources, which may then allow the control channel to observe less interference. In one design, a user equipment (UE) may detect high interference on radio resources used for a control channel by a desired base station. The UE may send a request to reduce interference on the radio resources to an interfering base station, which may reduce its transmit power on the radio resources. The UE may receive the control channel on the radio resources from the desired base station and may observe less interference from the interfering base station.
Abstract:
Systems and methodologies are described that facilitate mitigating effect of non-linear distortion from a power amplifier on a spectral mask margin. Power limit indications can be analyzed in scheduling mobile devices. Mobile devices with power limits can be scheduled on inner subbands. The power limits can be based at least in part on power amplifier headroom information. Other mobile devices can employ remaining portions of an allocated spectrum. Further, mobile devices can evaluate and establish a power amplifier backoff based upon the subband scheduling.