Abstract:
A base station for communicating with multiple groups of wireless communication devices is described. The base station includes a processor and executable instructions stored in memory that is in electronic communication with the processor. The base station determines a number of wireless communication devices. The base station also splits the number of wireless communication devices into groups. The base station further determines a precoding matrix for each group. The base station additionally transmits a beamformed signal to each group using the precoding matrix for each group.
Abstract:
Methods and apparatus for multiple user uplink are provided. In one aspect, a method for wireless communication includes generating a first wireless message granting permission for a first station to transmit during a transmission opportunity, generating a second wireless message granting permission for a second station to transmit during the transmission opportunity; and transmitting the first wireless message to the first station at least partially concurrently with transmission of the second wireless message to the second station.
Abstract:
In a particular embodiment, a method of controlling a radiation pattern includes selecting a signal processing characteristic to vary based on a radiation pattern to be emitted by an antenna array of a wireless device, wherein the antenna array includes a plurality of antennas, wherein the signal processing characteristic provides a target resultant radiation pattern, and wherein the signal processing characteristic is applies to less than all elements of the antenna array, and varying the signal processing characteristic across time, frequency, or a combination thereof.
Abstract:
Methods, apparatuses, and computer readable media for resource allocation signaling in a high efficiency wireless local area network (WLAN) are disclosed. A transmitter may generate an indication that a first channel of a plurality of channels associated with a transmission frame has been punctured, the transmission frame including a WLAN signaling field. The transmitter may identify information associated with the WLAN signaling field corresponding to the punctured first channel. The transmitter may transmit the information associated with the WLAN signaling field in a second channel of the plurality of channels. The transmitter may transmit the indication that the first channel has been punctured in the second channel or in a second WLAN signaling field of the transmission frame.
Abstract:
A method for wireless communication is provided. The method includes receiving, at a wireless device, a packet including a first field over a first number of tones, and a second field over a second number of tones. The second number of tones is greater than the first number of tones by a number of one or more edge tones carrying data. The method further includes determining at least one of a communication mode and a channel estimation based at least in part on the one or more edge tones carrying data.
Abstract:
Resource allocation signaling in a high efficiency wireless local area network (WLAN) is disclosed. An access point (AP) may generate a resource unit (RU) size indicator in a first WLAN signaling field, the RU size indicator decodable by a set of stations. The AP may also generate a common user field in a second WLAN signaling field, such that a size of the common user field may be based on the RU size indicator of the first WLAN signaling field. The AP may generate a station-specific field in the second WLAN signaling field, such that a position of the a station-specific field corresponds to one or more RUs associated with the a station-specific field. The AP may then transmit a WLAN preamble that includes the first WLAN signaling field followed by the second WLAN signaling field.
Abstract:
One aspect disclosed is a method in a wireless communications system including a first primary channel having a first frequency spectrum bandwidth and a second primary channel having a second frequency spectrum bandwidth, wherein the second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes performing a first and a second back-off procedure at least partially in parallel, the first back-off procedure based on whether the first primary channel is idle, and the second back-off procedure based on whether the second primary channel is idle, and transmitting a wireless message based on whether the first or the second back-off procedure completes first.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes generating a null data packet (NDP) frame comprising a physical layer preamble having a legacy preamble portion, a non-legacy portion, and an extension portion, wherein the extension portion is from the group consisting of: high efficiency (HE) signal information, and a padding waveform. The method further includes transmitting the NDP frame.
Abstract:
Systems, methods, and devices for transmitting data are described herein. In some aspects, a method comprises generating a first message. The first message may comprise an allocation of a first station to a first frequency channel and a second station to a second frequency channel. The method further comprises transmitting the first message over the first frequency channel and the second frequency channel. The method further comprises transmitting, after transmission of the first message, a second message to the first station using the first frequency channel. The method further comprises transmitting, after transmission of the first message, a third message to the second station using the second frequency channel.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for extending range and delay spread in 2.4 and 5 GHz bands, and potentially frequency multiplexing users. An apparatus is provided for wireless communications. The apparatus generally includes a processing system configured to generate a packet comprising a first preamble decodable by a first type of device and a second type of device, a second preamble that is decodable by the second type of device, but not the first type of device, and data and a transmitter configured to transmit the packet, wherein the first preamble is transmitted using a first channel bandwidth and the second preamble and data are transmitted using only a portion of the first channel bandwidth.