Abstract:
Disclosed is a method and apparatus enabling positioning processes performed by user equipment. The method may include initiating a voice call over a first wireless communications network using a first radio access technology (RAT). The method may also include a connection between the user equipment and a second wireless communications network using a second RAT being placed into an idle state. The method may also include participating in a control plane positioning process with the second wireless communications network during the voice call over the first wireless communications network.
Abstract:
Systems, apparatus and methods for populating and using a pressure database to determine an altitude of a unit with an unknown altitude are presented. A pressure from one or more barometric pressure sensors linked to respective base stations are interpolated to determine a reference pressure (e.g., at sea level) at arbitrary coordinates (x,y) having pressure reading. For example, a mobile station at the arbitrary coordinates (x,y) records a pressure at the mobile station. A difference between this pressure at the mobile station and the interpolated reference pressure is determined, which may directly be interpreted as a defined altitude of the mobile station.
Abstract:
An application executed within a mobile station to be triggered only by a network element, such as a mobile positioning center (MPC) or a Mobile Center (MC). The network element is coupled to a base station. The network element is responsible for authorizing an application that is either resident within the mobile station or that is run in a device that is resident elsewhere in the network. The mobile station communicates with the network element over a communication session through the base station and other infrastructure components. The mobile station initiates a mobile originated positioning session over a second communication session with a positioning assistance server.
Abstract:
Techniques disclosed herein provide for enhanced LTE Positioning Protocol (LPP) Reliable Transport where the receiver of an LPP message sends a non-piggybacked acknowledgement. An example method for executing on a mobile device a protocol session with a location server includes sending a first protocol session message associated with a first protocol session to the location server, entering a wait-for-acknowledgement state in which uplink transmissions from the mobile device to the location server are suspended while waiting for an acknowledgement from the location server in response to the first protocol session message, receiving a second protocol session message associated with a second protocol session which is not an acknowledgement to the first protocol session message but includes information requested in the first protocol session message; exiting the wait-for-acknowledgement state responsive to receiving the second protocol session message; and performing an action using the information received in the second protocol session message.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented as part of a mobile device to selectively transition operation of the mobile device from one communication mode to another communication mode. For example, a mobile device may selectively transition operation from one communication mode to another communication mode based, at least in part, on a determination that certain signaling environment attributes which were previously experienced and identified may once again have been experienced and identified.
Abstract:
Disclosed are methods and systems for supporting positioning operations in a cellular communication network including locating a mobile device in response to an emergency event. In one particular implementation, a first position fix may be provided quickly by a mobile device and may be followed by a second, more accurate, position fix at a later time. In particular implementations, the first and second position fixes may be provided using the 3GPP Long Term Evolution (LTE) Positioning Protocol (LPP) as part of a single LPP transaction and may further be provided using a user plane or control plane location solution.
Abstract:
Techniques for supporting positioning are described. In an aspect, positioning of mobile stations served by femto cells may be supported by having the femto cells transmit at least one identity used to differentiate the femto cells from other cells/sectors in a wireless network. The at least one identity may also convey certain information for the femto cells, which may be pertinent for positioning of the mobile stations. In one design, a femto cell may send the at least one identity assigned to the femto cell and the location of the femto cell to mobile stations as an aid for positioning. A mobile station may receive and forward the least one identity and the location of the femto cell to a location server. The mobile station and the location server may then perform positioning based on the at least one identity and the location of the femto cell.
Abstract:
Techniques disclosed herein provide for enhanced LTE Positioning Protocol (LPP) Reliable Transport where the receiver of an LPP message sends a non-piggybacked acknowledgement. An example method for executing on a mobile device a protocol session with a location server includes sending a first protocol session message associated with a first protocol session to the location server, entering a wait-for-acknowledgement state in which uplink transmissions from the mobile device to the location server are suspended while waiting for an acknowledgement from the location server in response to the first protocol session message, receiving a second protocol session message associated with a second protocol session which is not an acknowledgement to the first protocol session message but includes information requested in the first protocol session message; exiting the wait-for-acknowledgement state responsive to receiving the second protocol session message; and performing an action using the information received in the second protocol session message.
Abstract:
Techniques for supporting periodic and other location services with Secure User Plane Location (SUPL) and other location architectures are described. The techniques can provide position estimates for a SUPL enabled terminal (SET) to a SUPL agent periodically and/or based on trigger events. A Home SUPL Location Platform (H-SLP) receives from the SUPL agent a request for position estimates for the SET. The H-SLP starts a SUPL location session with the SET. For each of at least one reporting event during the location session, the H-SLP obtains a position estimate for the SET and sends the position estimate to the SUPL agent. The position estimate may be derived by the SET and sent to the H-SLP. Alternatively, the position estimate may be derived by the H-SLP based on measurements from the SET.