Abstract:
A UE maintains continuity of reception of a service of interest that is available over eMBMS broadcast service and unicast. The UE receives the service of interest over eMBMS from a network within a first MBSFN area supporting the eMBMS broadcast service. The UE receives at least one MBSFN threshold from the network and at least one MBSFN measurement from the network. The UE switches from reception of the eMBMS broadcast from the first MBSFN area to one of reception through unicast or reception through a second MBSFN area supporting the eMBMS broadcast service, based on the at least one MBSFN threshold and the at least one MBSFN measurement.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Certain aspects of the present disclosure provide a method for wireless communications by a UE. The method generally includes sharing a single transmit chain for communication by at least a first RAT and second RAT, determining a tolerable puncturing rate for the first RAT, and providing assistance information, based on the determined tolerable puncturing rate, to a base station of the second RAT to assist the base station in avoiding scheduling transmissions that would lead to conflict with uplink transmissions in the first RAT. Numerous other aspects are provided.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE monitors a first component carrier and at least one second component carrier of a plurality of aggregated component carriers for a service and configuration information associated with the service. The UE receives the service concurrently via the first component carrier and the at least one second component carrier. At least one of the first component carrier or the at least one second component carrier carries the service via broadcast.
Abstract:
Systems, methods, and receiver devices enable broadcasters with restricted content license areas (e.g., Designated Market Areas (“DMAs”) to distribute content via Over the Top (“OTT”) IP networks. Embodiments enable client reporting and authentication as well as broadcast content encryption. In an embodiment, information from the client may be reported back to the broadcasters, such as a view history/use report. In an embodiment, hand off between DMAs may be enabled. In an embodiment, local advertisement insertion in network content may be enabled. Embodiments may enable Multicast-Broadcast Single Frequency Network (“MBSFN”) operation across DMA boundaries.
Abstract:
In a first configuration, a UE receives, from a service provider, a certificate authority list. The certificate authority list is at least one of integrity protected or encrypted based on a credential known by the UE and the service provider and stored on a smartcard in the UE. The UE authenticates a server using the received certificate authority list. In a second configuration, the UE receives a user service discovery/announcement including a reception report configuration and an address of a server. The UE sends a protected reception report to the server based on the reception report configuration. In a third configuration, the UE receives a protected broadcast announcement and communicates based on the broadcast announcement. The broadcast announcement is at least one of integrity protected or encrypted based on a credential known by the UE and stored on a smartcard in the UE.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a request to receive a Multimedia Broadcast Multicast Service (MBMS) service associated with a service area identity (SAI) and a second frequency. The apparatus performs inter-frequency cell reselection from a first cell transmitting at a first frequency to a second cell transmitting at the second frequency, the second cell being an inter-frequency neighbor cell to the first cell. The apparatus receives system information from the second cell. The apparatus determines that the second cell transmitting at the second frequency is unassociated with the SAI based on the received system information. The apparatus blacklists the SAI on the second frequency in a blacklist for at least a period of time upon determining that the second cell is unassociated with the SAI.
Abstract:
A method, an apparatus, and a computer program product are provided in connection with facilitating hybrid unicast/broadcast service distribution. In one example, a communications device is equipped to provide a parity portion of titles in a channel of a service to a plurality of UEs at a first time, receive, from a UE at a second time, a request to access a title of the one or more titles, and provide an enablement item, to the requesting UE, which is a portion of the requested title that, when processed with the provided parity portion of the requested title, is sufficient to allow the requesting UE to decode and access to the requested title. In an aspect, the parity portion may be a parity portion of a fountain code encoded title, and the enablement item may be repair symbols of the fountain code encoded title.
Abstract:
An authentication server may be adapted to (a) authenticate an authentication peer seeking to establish communications via a first network access node; (b) retrieve user profile information associated with the authentication peer; and/or (c) send the user profile information to a network gateway node that facilitates communication services for the authentication peer. A PMIP network node may be adapted to (a) provide wireless network connectivity to an authentication peer via a first network access node; (b) provide a PMIP key to both ends of a PMIP tunnel between the first network access node and a PMIP network node used to provide communications to the authentication peer; (c) provide the PMIP key to a first authenticator associated the first network access node; (d) receive a request at the PMIP network node from a requesting entity to reroute communications for the authentication peer; and/or (e) verify whether the requesting entity knows the PMIP key.
Abstract:
Various improvements are desired for point-to-multipoint (PTM) transmission, where a network sends the PTM transmission to multiple user equipments (UEs). The apparatus may be an UE. The UE receives, from a network, a downlink transmission configuration indicating a transmit diversity downlink transmission mode of a plurality of downlink transmission modes, configures downlink communication based on the transmit diversity downlink transmission mode according to the downlink transmission configuration, and receives a service via PTM downlink transmission based on the transmit diversity transmission mode. In another aspect, The UE receives, from a network, a downlink transmission configuration indicating one of a plurality of downlink transmission modes, configures downlink communication based on the one of the plurality of downlink transmission modes according to the downlink transmission configuration, and receives a service via PTM transmission based on the one of the plurality of downlink transmission modes that corresponds with the service.