Abstract:
A wireless device may utilize enhanced OBSS identification techniques to determine whether an interfering transmission is associated with an OBSS. In an example, a wireless device may receive a WLAN packet that includes a preamble and a data region. The wireless device may analyze the preamble to determine whether the WLAN packet is an OBSS packet. If the wireless device determines there is insufficient information in the preamble to identify the WLAN packet as an OBSS packet, the wireless device may decode a portion of the data region (e.g., a MAC header) to determine if the WLAN packet is an OBSS packet. Prior to declaring a successful decoding of the MAC header, the wireless device may confirm the MAC header has been received reliably. Additionally or alternatively, BSS identifiers may be included in the data region and used to determine if the WLAN packet is associated with an OBSS.
Abstract:
A wireless device may utilize enhanced OBSS identification techniques to determine whether an interfering transmission is associated with an OBSS. In an example, a wireless device may receive a WLAN packet that includes a preamble and a data region. The wireless device may analyze the preamble to determine whether the WLAN packet is an OBSS packet. If the wireless device determines there is insufficient information in the preamble to identify the WLAN packet as an OBSS packet, the wireless device may decode a portion of the data region (e.g., a MAC header) to determine if the WLAN packet is an OBSS packet. Prior to declaring a successful decoding of the MAC header, the wireless device may confirm the MAC header has been received reliably. Additionally or alternatively, BSS identifiers may be included in the data region and used to determine if the WLAN packet is associated with an OBSS.
Abstract:
Methods, systems, and devices are described for wireless communication at a station. The station identifies a first set of enhanced distributed channel access (EDCA) parameters for a first access category based at least in part on a first traffic type and a determination that a multiple user (MU) frame is to be transmitted, and contends to gain access for a transmission opportunity over a shared radio frequency spectrum band to communicate with a plurality of other stations in a MU mode. The contention is based at least in part on the first set of EDCA parameters.
Abstract:
Systems, methods, and devices for multiple users sharing common wireless resources are disclosed. A method includes receiving a frame from one or more wireless devices on one or more channels selected from a set of wireless channels. The frame includes a pre-association identifier.
Abstract:
Systems and methods are disclosed that may provide for selective multi-user uplink (UL) of data for wireless devices. For example, a first wireless device may request permission to initiate a UL transmission to a second wireless device. The first wireless device may then receive, from the second wireless device, permission to initiate the UL transmission according to a multi-user (MU) UL protocol, determine a threshold duration for the UL transmission, and transmit UL data to the second wireless device according to the MU UL protocol and the threshold duration.
Abstract:
A computing device of a peer-to-peer group for a wireless communication protocol may determine that a peer-to-peer connection for the group transports an application flow sourced by a Group Owner to a client of the Group Owner. The computing devices of the group select the client that receives the application flow sourced by the Group Owner to be a new Group Owner for the group. As a consequence, the computing device of the group that receives the application flow is the new Group Owner and, as a result, the Group Owner for the group receives the application flow whereas prior to the selection of the new Group Owner the Group Owner transmitted the application flow.
Abstract:
A user terminal for multiple-user wireless communication is provided, comprising a transmit buffer configured to store uplink data for transmission. The user terminal comprises a processor configured to generate a request to transmit frame in response to uplink data being present in the transmit buffer, and initiate a transmit timer for determining when to transmit the request to transmit frame. The user terminal comprises a transmitter configured to transmit the request to transmit frame when the transmit timer expires or when the uplink data present in the transmit buffer exceeds a threshold amount. The user terminal comprises a receiver configured to receive a clear to transmit frame from an access point based on the transmitted request to transmit frame. The transmitter is further configured to transmit the uplink data present in the transmit buffer, concurrently with at least one other user terminal transmitting uplink data, to the access point at a specified time based on receiving the clear to transmit frame addressed to the user terminal.
Abstract:
Systems and techniques are described herein for network organization. For instance, a process can include receiving, from a second sensing apparatus of the self-organizing network, an indication of a first task. The process can further include retrieving a first power profile associated with the first task, determining a current battery level of the at least one battery, predicting a future battery level of the at least one battery based on the current battery level, and the first power profile associated with the first task, and transmitting, to another sensing apparatus, the predicted future battery level.
Abstract:
An apparatus for wireless communication includes data defragmentation logic configured to receive, during a first transmit opportunity, a first data packet from a first device and a second data packet from a second device. The first data packet includes a first data fragment, and the second data packet includes a second data fragment. The apparatus also includes block acknowledgement generation logic configured to generate a block acknowledgement frame including a first block acknowledgement bitmap and a second block acknowledgement bitmap. The first block acknowledgement bitmap indicates at least the first data fragment received from the first device, and the second block acknowledgement bitmap indicates at least the second data fragment received from the second device. The apparatus further includes a wireless interface configured to transmit the block acknowledgement frame to the first device and to the second device.
Abstract:
Methods, systems, and devices are described for wireless communication at a receiving device. A receiving device may receive a first physical layer header of a first wireless local area network (WLAN) protocol data unit over a shared radio frequency spectrum band. The first physical layer header may include at least a first basic service set (BSS) identifier and a first device association identifier (AID). The receiving device may perform, based at least in part on the first BSS identifier and the first device AID, an intra-frame operation including a power saving operation and/or a receive filtering operation.