Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive broadcast information from a base station indicating a numerology or a reference signal (RS) pattern to be used in broadcast or multicast transmissions (e.g., a physical multicast channel (PMCH)). The UE may identify a modulation and coding scheme (MCS) associated with the broadcast or multicast transmission and may determine a transport block size (TBS) based on the MCS and at least one of the numerology or the RS pattern. For instance, a UE may determine TBS for numerologies associated with a single symbol that spans multiple subframes differently from that of other numerologies. Additionally or alternatively, a UE may determine TBS for sparse RS patterns differently from that of other RS patterns. The UE may then perform communication with the base station via the broadcast or multicast transmissions in accordance with the TBS.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to adjusting how certain types of devices wake up and/or stay awake for broadcast service. A method for wireless communications is provided that may be performed by a user equipment (UE). The method includes receiving a power savings configuration indicating sleep periods during which the UE is scheduled to be unreachable. The method includes determining at least one time, during at least a portion of one of the indicated sleep periods, for the UE to be awake in order to at least one of: receive or discover Multimedia Broadcast Multicast Services (MBMS) user services.
Abstract:
Methods and apparatuses are provided for facilitating dynamic measurement power offset adjustments for use in reporting channel quality feedback. A user equipment may generate and send a plurality of channel quality indicator (CQI) values to a base station. The base station determines whether at least some of the received CQI values are outside of an upper or lower threshold value. If at least some of the received CQI values are outside the upper or lower threshold value, the base station can transmit an adjusted measurement power offset to the user equipment. On receipt of the adjusted measurement power offset, the user equipment generates subsequent CQI values using the adjusted measurement power offset.
Abstract:
A UE may include IoT NTN device, and the UE may acquire the GNSS location to perform the time/frequency pre-compensation. A NAS layer of the UE may initiate a connection request procedure based on the GNSS fix procedure at one or more lower layer of the UE. A network may transmit a paging request to the UE, and manage a paging response timer based on the GNSS fix procedure at the UE.
Abstract:
Method and apparatus for blocking session management procedures for a network slice during an NSSAA procedure. The apparatus receives a network slice-specific authentication command for a network slice that is currently allowed. The apparatus determines that the network slice is being authenticated based on the received network slice-specific authentication command. The apparatus blocks session management procedures associated with the network slice based on the determination that the network slice is being authenticated.
Abstract:
Methods, systems, and devices for wireless communications are described. Generally, a base station may indicate in system information, or a user equipment (UE) may determine based on system information, which reference signal resources may be used for channel estimation for a given broadcast control channel. In some examples, a base station may configure and transmit reference signals having the same numerology as a broadcast control channel according to a first reference signal pattern during the same subframe in which the broadcast control channel is configured. The first reference signal pattern may be more dense than a second reference signal pattern used for reference signals having a different numerology than the broadcast control channel. The more dense first reference signal pattern may provide sufficient reference signals for successful single-symbol channel estimation, resulting in a successful decoding of the broadcast control channel.
Abstract:
The present disclosure relates to a user equipment (UE) dynamically adjusting a non-access stratum (NAS) timer. Specifically, the UE may determine operation in a wideband and support of an extended coverage (EC) restriction. The UE may further identify a duration of a non-access stratum (NAS) timer based on determining operation in the wideband and the EC restriction. The UE may further transmit an access request message to a network entity to trigger a mobility management procedure. The UE may further receive an acceptance message from the network entity indicating an unrestricted or restricted status of the EC restriction. The UE may further apply the duration to the NAS timer based on the acceptance message indicating the unrestricted or restricted status of the EC restriction received from the network entity or a history of EC restrictions of a public land mobile network (PLMN) in a defined geographic area.
Abstract:
A user equipment (UE) selects or reselects a target cell of a non-terrestrial network or resumes connectivity with the target cell after a satellite handover for a permanently fixed low Earth orbit (LEO) cell. The target cell is a serving or non-serving cell. The UE determines a cell type of the target cell. The cell type may be a LEO cell type, a geostationary Earth orbit (GEO) cell type, a moving cell type, a fixed cell type, a temporarily fixed LEO cell type, or a permanently fixed LEO cell type. The UE completes selection or reselection of the target cell or completes the connectivity with the target cell, based on the cell type.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a capability of the UE relating to a carrier configuration of the UE, wherein the carrier configuration relates to carriers of at least two different numerologies; and transmit information identifying the capability, wherein the information identifying the capability identifies a bandwidth or number of carriers that is supported for carriers of a first numerology and one or more scaling values associated with one or more numerologies other than the first numerology. A base station may receive information identifying a capability of a UE relating to a carrier configuration of the UE, wherein the carrier configuration relates to carriers of at least two different numerologies; and determine a configuration for communication with the UE based at least in part on the information identifying the capability. Numerous other aspects are provided.
Abstract:
Techniques for managing access combinations for multiple access protocol data unit (PDU) sessions are described. A communication device may receive control signaling indicating a configuration for a multiple access PDU session associated with a plurality of access links. The plurality of access links may be associated with a first type of access, a second type of access, or a combination thereof. The communication device may select a mode for allocation of a data flow associated with the multiple access PDU session to the plurality of access links based at least in part on the received control signaling. The communication device may allocate the data flow associated with the multiple access PDU session to the plurality of access links based at least in part on the selected mode, and transmit the allocated data flow over the plurality of access links associated with the two types of access.