Abstract:
An electrolytic capacitor includes a capacitor element, a solid electrolyte layer, an electrolyte solution. The capacitor element has an anode foil with a dielectric layer, and a cathode foil. The solid electrolyte layer is provided between the anode foil and the cathode foil. And the capacitor element is impregnated with the electrolyte solution. The cathode foil includes a covering layer that contains at least one metal selected from titanium and nickel or a compound of the at least one metal. And the solid electrolyte layer contains a conductive polymer, a polymer dopant, and a base component.
Abstract:
An electrolytic capacitor includes an anode body having a dielectric layer; a solid electrolyte layer in contact with the dielectric layer of the anode body; and an electrolyte solution. The solid electrolyte layer includes a π-conjugated conductive polymer. The electrolyte solution contains a solvent and a solute, and the solvent contains a glycol compound and a sulfone compound. A proportion of the glycol compound contained in the solvent is 10% by mass or more. A proportion of the sulfone compound contained in the solvent is 30% by mass or more. A total proportion of the glycol compound and the sulfone compound contained in the solvent is 70% by mass or more.
Abstract:
An electrolytic capacitor includes an anode body having a dielectric layer; a solid electrolyte layer in contact with the dielectric layer of the anode body; and an electrolytic solution. The electrolytic solution contains a solvent and a solute. The solvent contains a glycol compound. The solute contains an acid component and a base component. A mass of the acid component in the solute is greater than a mass of the base component in the solute. The acid component contains a first aromatic compound having a hydroxyl group.
Abstract:
An electrical storage device includes an electrical storage element and an electrolytic solution. The electrical storage element is formed of an anode body, a cathode body facing the anode body, and a separator interposed between the anode body and the cathode body. The separator includes a separator substrate and a conductive polymer adhering to the separator substrate. The electrical storage element is impregnated with the electrolytic solution. The separator includes a first surface layer having a first surface facing the anode body and a second surface layer having a second surface facing the cathode body. The first surface layer includes a first region that is not provided with the conductive polymer, and the second surface layer includes a second region provided with the conductive polymer.
Abstract:
An electrolytic capacitor includes an anode body having a dielectric layer on a surface of the anode body, a cathode body, and an electrolytic solution interposed between the anode body and the cathode body. The electrolytic solution contains a first ester compound and a second ester compound. The first ester compound is a condensate of boric acid and a sugar alcohol. The second ester compound contains at least one condensate selected from the group consisting of a condensate of boric acid and a monool compound and a condensate of boric acid and a polyol compound excluding a sugar alcohol.
Abstract:
An electrolytic capacitor includes: an anode body having a dielectric layer; a solid electrolyte layer in contact with the dielectric layer; and an electrolytic solution. The electrolytic solution contains a solvent and a solute. The solvent contains a glycol compound. The solute contains a carboxylic acid component and a base component. A ratio of the carboxylic acid component in the solute is 200 parts by mass or more with respect to 100 parts by mass of the base component.
Abstract:
A dispersion liquid including one of thiophene and derivatives thereof, a polyanion, and a solvent is prepared. Then, the dispersion liquid is mixed with an oxidizing agent so as to oxidatively polymerize the one of thiophene and derivatives thereof. During the oxidative polymerization, a temperature of the dispersion liquid is 35° C. or less and a dissolved oxygen concentration of the dispersion liquid is 7 ppm or less.
Abstract:
A method for manufacturing an electrolytic capacitor of the present disclosure includes first to third steps. In the first step, a capacitor element is prepared that includes an anode body on which a dielectric layer is formed. In the second step, the capacitor element is impregnated with a first treatment solution containing at least a conductive polymer and a first solvent. In the third step, the capacitor element is, after the second step, impregnated with a second treatment solution that contains a polyol compound having 3 or more hydroxyl groups per molecule.
Abstract:
A method for producing an electrolytic capacitor, the electrolytic capacitor including a capacitor element including an anode body and a cathode body each having a foil shape. The anode body includes a dielectric layer on a surface of the anode body. The method includes a step of forming a capacitor element precursor by winding or stacking a separator, the anode body, and the cathode body with the separator interposed between the anode body and the cathode body, a step of impregnating the capacitor element precursor with a treatment liquid containing an acid component, a solvent, and a conductive polymer component, a step of impregnating the capacitor element precursor with a liquid component after the step of impregnating the capacitor element precursor with the treatment liquid, and a step of forming the capacitor element by eluting the acid component into the liquid component.
Abstract:
An electrolytic capacitor includes a capacitor element and an electrolytic solution. The capacitor element includes: an anode body including a dielectric layer; a cathode body; and a solid electrolyte in contact with the dielectric layer. The electrolytic solution includes a solvent, a solute, and a polymer component. The solvent includes an ethylene glycol compound. The polymer component includes polyalkylene glycol. The polyalkylene glycol includes at least one of (i) a mixture of polyoxyethylene and polyoxypropylene and (ii) an oxyethylene-oxypropylene copolymer. In the polyalkylene glycol, a molar ratio m/n of oxyethylene units to oxypropylene units is greater than 1.