Abstract:
A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element.
Abstract:
An integrated circuit system includes a first device wafer bonded to a second device wafer at a bonding interface of dielectrics. Each wafer includes a plurality of dies, where each die includes a device, a metal stack, and a seal ring that is formed at an edge region of the die. Seal rings included in dies of the second device wafer each include a first conductive path provided with metal formed in a first opening that extends from a backside of the second device wafer, through the second device wafer, and through the bonding interface to the seal ring of a corresponding die in the first device wafer.
Abstract:
A pixel cell includes a photodiode disposed in an epitaxial layer in a first region of semiconductor material to accumulate image charge. A floating diffusion is disposed in a well region disposed in the epitaxial layer in the first region. A transfer transistor is coupled to selectively transfer the image charge from the photodiode to the floating diffusion. A deep trench isolation (DTI) structure disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a doped semiconductor material disposed inside the DTI structure that is selectively coupled to a readout pulse voltage in response to the transfer transistor selectively transferring the image charge from the photodiode to the floating diffusion.
Abstract:
Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate).In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
Abstract:
Embodiments of an apparatus including a color filter arrangement formed on a substrate having a pixel array formed therein. The color filter arrangement includes a clear filter having a first clear hard mask layer and a second clear hard mask layer formed thereon, a first color filter having the first clear hard mask layer and the second hard mask layer formed thereon, a second color filter having the first clear hard mask layer formed thereon, and a third color filter having no clear hard mask layer formed thereon. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of a process including depositing a sacrificial layer on the surface of a substrate over a photosensitive region, over the top surface of a transfer gate, and over at least the sidewall of the transfer gate closest to the photosensitive region, the sacrificial layer having a selected thickness. A layer of photoresist is deposited over the sacrificial layer, which is patterned and etched to expose the surface of the substrate over the photosensitive region and at least part of the transfer gate top surface, leaving a sacrificial spacer on the sidewall of the transfer gate closest to the photosensitive region. The substrate is plasma doped to form a pinning layer between the photosensitive region and the surface of the substrate. The spacing between the pinning layer and the sidewall of the transfer gate substantially corresponds to a thickness of the sacrificial spacer. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate).In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
Abstract:
An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. A contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. The first polarity charge layer is disposed between a first one of a plurality of passivation layers and a second one of the plurality of passivation layers disposed over the photodiode region.
Abstract:
Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
Abstract:
Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.