Abstract:
An image sensor comprises a semiconductor material having an illuminated surface and a non-illuminated surface; a photodiode formed in the semiconductor material extending from the illuminated surface to receive an incident light through the illuminated surface, wherein the received incident light generates charges in the photodiode; a transfer gate electrically coupled to the photodiode to transfer the generated charges from the photodiode in response to a transfer signal; a floating diffusion electrically coupled to the transfer gate to receive the transferred charges from the photodiode; and a near infrared (NIR) quantum efficiency (QE) and modulation transfer function(MTF) enhancement structure. The NIR QE and MTF enhancement structure comprises: a NIR QE enhancement sub-structure comprising at least one NIR QE enhancement elements within a photosensitive region of the photodiode, wherein the NIR QE enhancement sub-structure is configured to modify the incident light at the illuminated surface of the semiconductor material by at least one of diffraction, deflection and reflection, to redistribute the incident light within the photodiode to improve optical sensitivity, including NIR light sensitivity, of the image sensor; and a MTF enhancement sub-structure disposed on the non-illuminated surface of the semiconductor material, facing toward the NIR QE enhancement sub-structure, wherein the MTF enhancement structure has a geometry corresponding to the NIR QE enhancement sub-structure, to ensure the incident light is still within the photodiode after redistribution.
Abstract:
A method of image sensor package fabrication includes providing an image sensor, including a pixel array disposed in a semiconductor material, and a transparent shield adhered to the semiconductor material. The pixel array is disposed between the semiconductor material and the transparent shield. The method further includes removing portions of the transparent shield to form recessed regions in the transparent shield, where lateral bounds of the transparent shield extend beyond lateral bounds of the pixel array, and wherein the recessed regions are disposed in portions of the transparent shield that extend beyond the lateral bounds of the pixel array. The recessed regions are filled with a light blocking layer.
Abstract:
An image sensor includes a plurality of photodiodes disposed in a semiconductor layer, a first isolation layer, and a dielectric filler. The dielectric filler is disposed in a trench in the first isolation layer, and the first isolation layer is disposed between the semiconductor layer and the dielectric filler. At least one additional isolation layer is disposed proximate to the first isolation layer, and a plurality of light channels in the at least one additional isolation layer extend through the at least one additional isolation layer to the dielectric filler. The plurality of light channels is disposed to direct light into the plurality of photodiodes.
Abstract:
An image sensor includes first and second pluralities of photodiodes interspersed among each other in a semiconductor substrate. Incident light is to be directed through a surface of the semiconductor substrate into the first and second pluralities of photodiodes. The first plurality of photodiodes has greater sensitivity to the incident light than the second plurality of photodiodes. A metal film layer is disposed over the surface of the semiconductor substrate over the second plurality of photodiodes and not over the first plurality of photodiodes. A metal grid is disposed over the surface of the semiconductor substrate, and includes a first plurality of openings through which the incident light is directed into the first plurality of photodiodes. The metal grid further includes a second plurality of openings through which the incident light is directed through the metal film layer into the second plurality of photodiodes.
Abstract:
A color filter array includes a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters. Each minimal repeating unit includes a plurality of imaging filters including individual filters having at least first, second, and third photoresponses, and at least one reference filter having a reference photoresponse, wherein the reference filter is positioned among the imaging filters and wherein the reference photoresponse transmits substantially the same percentage of wavelengths that remain unfiltered by filters of a different photoresponse than the incident wavelength. Other embodiments are disclosed and claimed.
Abstract:
An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
Abstract:
A color filter array includes a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters. Each minimal repeating unit includes a plurality of imaging filters including individual filters having at least first, second, and third photoresponses, and at least one reference filter having a reference photoresponse, wherein the reference filter is positioned among the imaging filters and wherein the reference photoresponse transmits substantially the crosstalk spectrum that is not filtered from light incident on the color filter array by the plurality of imaging filters. Other embodiments are disclosed and claimed.
Abstract:
An image sensor pixel array comprises a plurality of image pixel units to gather image information and a plurality of phase detection auto-focus (PDAF) pixel units to gather phase information. Each of the PDAF pixel units includes two of first image sensor pixels covered by two micro-lenses, respectively. Each of the image pixel units includes four of second image sensor pixels adjacent to each other, wherein each of the second image sensor pixels is covered by an individual micro-lens. A coating layer is disposed on the micro-lenses and forms a flattened surface across the whole image sensor pixel array. A PDAF micro-lens is formed on the coating layer to cover the first image sensor pixels.
Abstract:
Light control for improved near infrared sensitivity and channel separation for an image sensor. In one embodiment, an image sensor includes: a plurality of photodiodes arranged in rows and columns of a pixel array; and a light filter layer having a plurality of light filters configured over the plurality of photodiodes. The light filter layer has a first side facing the plurality of photodiodes and a second side facing away from the first side. The image sensor also includes a color filter layer having a plurality of color filters configured over the plurality of photodiodes. The color filter layer has a first surface facing the second side of the light filter layer and a second surface facing away from the first layer. Individual micro-lenses are configured to direct incoming light through corresponding light filter and color filter onto the respective photodiode.
Abstract:
A method for manufacturing a high-dynamic-range color image sensor includes (a) depositing a color filter layer on a silicon substrate having a photosensitive pixel array with a plurality of first pixels and a plurality of second pixels, to form (i) a plurality of first color filters above a first subset of each of the plurality of first pixels and the plurality of second pixels and (ii) a plurality of second color filters above a second subset of each of the plurality of first pixels and the plurality of second pixels, wherein thickness of the second color filters exceeds thickness of the first color filters, and (b) depositing, on the color filter layer, a dynamic-range extending layer including grey filters above the second pixels to attenuate light propagating toward the second pixels, combined thickness of the color filter layer and the dynamic-range extending layer being uniform across the photosensitive pixel array.