摘要:
A silicate luminescent material and the production method thereof are provided. The chemical formula of the silicate luminescent material is Re4−xTbxMgSi3O13, wherein Re is at least one element selected from the group consisting of Y, Gd, La, Lu and Sc, and 0.05≦x≦1. The silicate luminescent material has a short afterglow of 2.13 ms, and it can emit strong green light under the vacuum ultraviolet excitation. Additionally, the silicate luminescent material has stable physical and chemical properties. The production method for producing the silicate luminescent material is simple and cost-efficient.
摘要:
A luminescent glass comprises glass matrix. Said glass matrix comprises a glass part and a complex part of glass and fluorescent powder, which is embedded in said glass part. Said complex part of glass and fluorescent powder comprises glass material and fluorescent powder dispersed in said glass material. Said fluorescent powder is of cerium-doped terbium aluminum garnet series. A method for producing the luminescent glass and a luminescent device comprising the luminescent glass are also provided. The luminescent glass and the luminescent device have good luminescence reliability, high luminescence stability and long service life. The method can be carried out at a relatively low temperature.
摘要:
The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dPr2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
摘要:
Blue light emitting glass and the preparation method thereof are provided. The blue light emitting glass has the following composition: aCaO.bAl2O3.cSiO2.xCeO2, wherein a, b, c and x are, by mol part, 15-55, 15-35, 20-60 and 0.01-5 respectively. The preparation method comprises: weighing the raw materials according to the composition of the blue light emitting glass; mixing the raw materials uniformly and melting the raw materials to obtain glass melt; moulding the glass melt to obtain transparent glass; thermally treating the transparent glass under reducing atmosphere, and thereafter obtaining the finished product. The blue light emitting glass obtained has intense broadband excitation spectrum in ultraviolet region and emits intense blue light under the excitation of ultraviolet light. It is suitable for using as luminescent medium material.
摘要:
A rare earth ion doped silicate luminescence glass and preparation method thereof are provided. The luminescence glass is the material with the following formula: aM2O.bM′2O3.cSiO2.dRE2O3, wherein M is at least one of Na, K and Li, M′ is at least one of Y, Gd, La, Sc and Lu, RE is at least one of Ce, Tm, Tb, Ho, Dy, Er, Nd, Sm, Eu and Pr. The preparation method is: grinding the raw material until mixed uniformly, calcining the raw material at 1200-1500° C. for 1-5 h, cooling to room temperature, annealing at 600-1100° C. for 0.5-24 h, cooling to room temperature again, molding then getting the product. The performance of the product is stable. The product is homogenous, and the luminescence performance is good. The light transmittance is high. The process of the preparation method is simple and with low cost.
摘要:
A luminescent element includes a luminescent glass and a metal layer with a metal microstructure formed on a surface of the luminescent glass; wherein the luminescent glass has a chemical composition: bY2O3.cAl2O3.dB2O3.yTb2O3, wherein bY2O3.cAl2O3.dB2O3.yTb2O3. A preparation method of a luminescent element and a luminescence method are also provided. The luminescent element has good luminescence homogeneity, high luminescence efficiency, good luminescence stability and simple structure, and can be used in luminescent device with ultrahigh brightness.
摘要:
A preparation method of zinc manganese silicate is provided. The method includes the following steps: step 1, preparing silicon dioxide sol with distilled water, anhydrous ethanol and tetraethyl orthosilicate; step 2, preparing a mixture solution of a zinc salt and a manganese salt; step 3, adjusting the silicon dioxide sol to be neutral or acidic; step 4, adding the mixture solution of the zinc salt and the manganese salt into the silicon dioxide sol to form a gelatin; step 5, drying the gelatin, keeping the temperature, grinding, reducing with keeping the temperature in a reductive atmosphere to obtain zinc manganese silicate. The preparation method has simple technique and low equipment requirement. The particles of the zinc manganese silicate phosphor prepared by the method have a regular size, uniform shape and good luminescent performance.
摘要:
Halo-borate luminescent materials and preparation methods thereof are provided. The said luminescent materials are represented by the following general formula: Ca2-xBO3Cl1-yFy:xEu2+, zM0, wherein M0 is selected from one of Ag, Au, Pt, Pd or Cu metal nano-particles; 0.001≦x≦0.1, 0≦y≦0.2, 0≦z≦0.01. The said luminescent materials have excellent chemical stability and high luminous intensity. The said preparation methods have simple technique, no pollution, manageable process conditions and low equipment requirement, and are beneficial to industry production.
摘要翻译:提供卤硼酸盐发光材料及其制备方法。 所述发光材料由以下通式表示:Ca2-xBO3Cl1-yFy:xEu2 +,zM0,其中M0选自Ag,Au,Pt,Pd或Cu金属纳米颗粒之一; 0.001 @ x @ 0.1,0 @ y @ 0.2,0 @ z @ 0.01。 所述发光材料具有优异的化学稳定性和高发光强度。 所述制备方法技术简单,无污染,工艺条件可控,设备要求低,有利于工业生产。
摘要:
Tungstate luminescent materials and preparation methods thereof are provided. The said luminescent materials are represented by the following general formula: RWO4:xM, wherein R is selected from one or two of Ca, Sr or Ba, M is selected from one or two of Ag, Au, Pt or Pd metal nano-particles; 0
摘要:
A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency. A manufacturing method of the field emission light source device is also provided.